The event in the life of a star that begins its expansion into a giant is its core that was hot enough for fusion reaction.
<h3>What is fusion reaction?</h3>
Nuclear fusion is a type of reaction in which two or more atomic nuclei are fuse to form one or more different atomic nuclei with the release or the absorption of energy.
So we can conclude that the event in the life of a star that begins its expansion into a giant is its core that was hot enough for fusion reaction.
Learn more about reaction here: brainly.com/question/26018275
#SPJ9
The study of EM is essential to understanding the properties of light, its propagation through tissue, scattering and absorption effects, and changes in the state of polarization. ... Since light travels much faster than sound, detection of the reflected EM radiation is performed with interferometry.
Force applied on the car due to engine is given as
towards right
Also there is a force on the car towards left due to air drag
towards left
now the net force on the car will be given as

now we can say that since the two forces are here opposite in direction so here the vector sum of two forces will be the algebraic difference of the two forces.
So we can say



So here net force on the car will be 150 N towards right and hence it will accelerate due to same force.
Hello! You can call me Emac or Eric.
I understand your problem, that question is pretty hard. But I found some information that I think you should read. This can get your problem done quickly.
Please hit that thank you button if that helped, I don’t want thank you’s I just want to know that this helped.
Please reply if this doesn’t help, I will try my best to gather more information or a answer.
Here is some good information that could help you out a lot!
Let’s begin by exploring some techniques astronomers use to study how galaxies are born and change over cosmic time. Suppose you wanted to understand how adult humans got to be the way they are. If you were very dedicated and patient, you could actually observe a sample of babies from birth, following them through childhood, adolescence, and into adulthood, and making basic measurements such as their heights, weights, and the proportional sizes of different parts of their bodies to understand how they change over time.
Unfortunately, we have no such possibility for understanding how galaxies grow and change over time: in a human lifetime—or even over the entire history of human civilization—individual galaxies change hardly at all. We need other tools than just patiently observing single galaxies in order to study and understand those long, slow changes.
We do, however, have one remarkable asset in studying galactic evolution. As we have seen, the universe itself is a kind of time machine that permits us to observe remote galaxies as they were long ago. For the closest galaxies, like the Andromeda galaxy, the time the light takes to reach us is on the order of a few hundred thousand to a few million years. Typically not much changes over times that short—individual stars in the galaxy may be born or die, but the overall structure and appearance of the galaxy will remain the same. But we have observed galaxies so far away that we are seeing them as they were when the light left them more than 10 billion years ago.
That is some information, I do have more if you need some! Thanks!
Have a great rest of your day/night! :)
Emacathy,
Brainly Team.