Answer:
B. 4a
Explanation:
Force between the charges is inversely proportional to the square of the distance
=> Force will be 4 times and acceleration will be 4a
=> Answer b).
The work done by a system on a different body is equal to the product of the force exerted and the distance that the body has move in parallel to the force exerted. In this item, we have to determine first the distance and multiply it with the given force equal to 750N.
The tralational equilibrium condition allows finding that the electric potential is V = 4.8 10¹¹ V
Given parameter
- The mass m = 1.5 g = 1.15 10-3 kg
- The charge on the sphere q = 8.9 10-16 C
- Plate spacing d = 5 cm = 5.00 10-2 m
To find
Newton's second law states that the force is proportional to the mass and the acceleration of the bodies, in the special case that the acceleration is zero, it establishes the condition for the equilibrium of the bodies
∑ F = 0
Where the bold indicate vector and F is the force
To use this equation we must fix a reference system with respect to which to carry out the decomposition and measurements of the forces; let's fix a system with the horizontal x axis and the vertical y axis, in the attachment I could see a free body diagram.
x- axis
Fe - Tₓ = 0
Fe = Tₓ
y-axis
- W = 0
W =
mg =
The electric force is
Fe = q E = q V / d
let's use trigonometry to decompose the stress
cos 30 =
/ T
sin 30 = Tₓ / T
= T cos 30
Tₓ = T sin 30
We substitute
q V / d = T sin 30
mg = T cos 30
It's solve the system of equations
= tan 30
V =
It's calculate
V =
V = 4.768 10¹¹ V
In conclusion, using the equilibrium condition, we could find that the electric potential is V = 4.8 10¹¹ V
Learn more about equilibrium condition here:
brainly.com/question/1967702
Answer:
Applications of Total Internal Reflection of Light: The phenomenon of total internal reflection of light is used in many optical instruments like telescopes, microscopes, binoculars, spectroscopes, periscopes etc. The brilliance of a diamond is due to total internal reflection.
Answer: Pretty sure False Have a good day :)
Explanation: