Answer:
So, the correct answer is <em><u>the strong nuclear force</u></em>. It actually pulls together nuetrons and protons that are in the nucleus. At very tiny distances only, like those inside the nucleus, so, this strong force succeded in dealing with the electromagnetic force, and it basically stops the electrical repulsion of protons from blowing apart the nucleus.
<u><em>Mark as brainlies please, I need a few more :D</em></u>
Answer:
The final velocity of the object is,
= 27 m/s
Explanation:
Given,
The acceleration of the object, a = 1000 m/s²
The initial displacement of the object,
= 0 m
The final displacement of the object,
= 0.75 m
The initial velocity of the object will be,
= o m/s
The final velocity of the object,
= ?
The average velocity of the object,
v = (
-
)/ t
= 0.75 / t
The acceleration is given by the relation
a = v / t
1000 m/s² = 0.75 / t²
t² = 7.5 x 10⁻⁴
t = 0.027 s
Using the I equation of motion,
= u + at
Substituting the values
= 0 + 1000 x 0.027
= 27 m/s
Hence, the final velocity of the object is,
= 27 m/s
A illustrates 2 resistors in a parallel circuit.
Answer:
The appropriate solution is:
(a) 
(b) 
(c) 
Explanation:
According to the question, the value is:
Power of bulb,
= 60 W
Distance,
= 1.0 mm
Now,
(a)
⇒ 
On applying cross-multiplication, we get
⇒ 
⇒ 
⇒ 
(b)
As we know,
⇒ 
By putting the values, we get
⇒ 
(c)
⇒ 

⇒ 
⇒ 