Answer:
draw a tree diagram to determine the sample space Step-by-step explanation:
The slope of the line is -3/4
F(x) can be written as:
f(x) = Asin(2x); where A is the amplitude and the period of the function is half that of a normal sin function.
f(π/4) = 4
4 = Asin(2(π/4))
4 = Asin(π/2)
A = 4
Amplitude of g(x) = 1/2 * amplitude of f(x)
A for g(x) = 2
g(x) = 2sin(x)
Answer:
f(x) = -2x+5
f(x+h) = -2x -2h +5
g(x) = -4x-2
g(x+h) = -4x -4h -2
h(x) = 4x^2+1
h(x+h) = 4(x+h)^2 +1 = 4x^2 +8xh + 4h^2 +1
Q(x) = -3x^2 +4
Q(x+h) = -3(x+h)^2 +4 = -3x^2 -3h^2 -6xh + 4
I haven’t done this in a while