Answer:
Photoelectric effect, pair production and Compton scattering
Explanation:
Gamma rays, having no charge, can be slowed slowly by ionization as a material passes through. They suffer other mechanisms that eventually make them disappear, transferring their energy, they can cross several centimeters of a solid, or hundreds of meters of air, without undergoing any process or affecting the material they cross. Then they suffer one of the three effects and deposit much of their energy there. The three mechanisms of interaction with matter are: the photoelectric effect, the Compton effect and the production of pairs.
The photoelectric effect is that the photon meets an electron in the material and transfers all its energy, disappearing the original photon. The secondary electron acquires all the energy of the photon in the form of kinetic energy, and is sufficient to separate it from its atom and convert it into a projectile. This is stopped by ionization and excitation of the material
In the Compton effect the photon collides with an electron as if it were a clash between two elastic spheres. The secondary electron acquires only part of the energy of the photon and the rest takes it with another photon of lesser energy and diverted.
When an energy photon approaches the intense electric field of a nucleus, the production of pairs can happen. In this case the photon is transformed into an electron positron pair. Since the sum of the mass of the pair is 1.02 MeV, it cannot happen if the photon's energy is less than this amount. If the energy of the original photon is greater than 1.02 MeV, the surplus is distributed by the electron and the positron as kinetic energy, and the material can be ionized. The positron at the end of its path forms a positronium and then annihilates producing two annihilation photons, 0.51 MeV each.
Answer: B.22.4 liters
Explanation:
When we attribute to a certain fixed mass of a given gas a fixed number of molecules. Avogadro considered that the mass of 36g of oxygen at any temperature and pressure would have a fixed number of molecules to which he called 1 mol of molecules. So by definition 1 mole of molecules would have a number of molecules equal to that present in 36 g of oxygen. The occupied volume by one mole of molecules at a given temperature and pressure is called molar volume and consists in 22,4 Liters. The molar volume matches the Avogadro Hypothesis (created in 1811 by Amedeo Avogadro), where equal volumes of different gases, at the same temperature and pressure, have even number of moles.
Explanation:
A mixture is made of two or more substances that are not chemically combined whereas a compound is made of 2 or more elements that are chemically combined. The elements that make up the compound are combined in fixed ratios.
Correct Question:
A spectator ion is (Select all that apply.)
- a piece of french fry contaminating the reaction mixture
- an ionic component of a reactant that is unchanged by the reaction
-in this experiment, nitrate ion
- your eye, carefully watching the progress of the reaction
Answer:
- an ionic component of a reactant that is unchanged by the reaction
Explanation:
A spectator ion is an ion that exists as a reactant and a product in a chemical equation. A spectator ion is one that exists in the same form on both the reactant and product sides of a chemical reaction.
Spectator ions are ions that are present in a solution but don't take part in the reaction. When reactants dissociate into ions, some of the ions may combine to form a new compound. The other ions don't take part in this chemical reaction and are therefore called spectator ions.
The correct option is therefore the option;
- an ionic component of a reactant that is unchanged by the reaction
Answer: 373 mL
Explanation:
Since there is no change in pressure, the formula: V / T = V / T can be used.
However, you must first convert the temperatures to Kelvin by adding 273 to them:
(19 + 273) = 292K and (90 + 273) = 363K.
Now, plug in: V / 292 = 464 / 363 → V = 373 mL :)