Answer:
16
Step-by-step explanation:
F ` ( x ) = ( x² )` · e^(5x) + x² · ( e^(5x) )` =
= 2 x · e^(5x) + 5 e^(5x) · x² =
= x e^(5x) ( 2 + 5 x )
f `` ( x ) = ( 2 x e^(5x) + 5 x² e^(5x) ) ` =
= ( 2 x ) ˙e^(5x) + 2 x ( e^(5x) )` + ( 5 x² ) ` · e^(5x) + ( e^(5x)) ` · 5 x² =
= 2 · e^(5x) + 10 x · e^(5x) + 10 x · e^(5x) + 25 x² · e^(5x) =
= e^(5x) · ( 2 + 20 x + 25 x² )
<u>the correct question is</u>
The denarius was a unit of currency in ancient rome. Suppose it costs the roman government 10 denarii per day to support 4 legionaries and 4 archers. It only costs 5 denarii per day to support 2 legionaries and 2 archers. Use a system of linear equations in two variables. Can we solve for a unique cost for each soldier?
Let
x-------> the cost to support a legionary per day
y-------> the cost to support an archer per day
we know that
4x+4y=10 ---------> equation 1
2x+2y=5 ---------> equation 2
If you multiply equation 1 by 2
2*(2x+2y)=2*5-----------> 4x+4y=10
so
equation 1 and equation 2 are the same
The system has infinite solutions-------> Is a consistent dependent system
therefore
<u>the answer is</u>
We cannot solve for a unique cost for each soldier, because there are infinite solutions.
Answer:

Step-by-step explanation:

______________

Answer:
i think is b sorry if im wrong