You're looking for a number <em>w</em> such that the numbers
{1 + <em>w</em>, 7 + <em>w</em>, 15 + <em>w</em>}
form a geometric sequence, which in turn means there is a constant <em>r</em> for which
7 + <em>w</em> = <em>r</em> (1 + <em>w</em>)
15 + <em>w</em> = <em>r</em> (7 + <em>w</em>)
Solving for <em>r</em>, we get
<em>r</em> = (7 + <em>w</em>) / (1 + <em>w</em>) = (15 + <em>w</em>) / (7 + <em>w</em>)
Solve this for <em>w</em> :
(7 + <em>w</em>)² = (15 + <em>w</em>) (1 + <em>w</em>)
49 + 14<em>w</em> + <em>w</em> ² = 15 + 16<em>w</em> + <em>w</em> ²
2<em>w</em> = 34
<em>w</em> = 17
Then the three terms in the sequence are
{18, 24, 32}
and indeed we have 24/18 = 4/3 and 32/24 = 4/3.