The correct answer would be B verhornend did the most
I'm guessing your problem is this:
y³ - 9y² + y - 9 = 0
right?
In solving this problem, I recommend doing this:
y³ - 9y² + y - 9 = 0
Factor out a y² from the first two numbers in the problem:
y²(y - 9) + (y - 9) = 0
Separate the parentheses which means y - 9 goes on one side. The y² added a one since it came from the + 1 in the middle of expression. When you're separating parentheses like this you just take the outside numbers and combine them together. Since + 1 came from the outside of the (y - 9) and y² also was sitting on the outside of (y - 9) combine them to make y² + 1. Like this:
(y² + 1)(y - 9) = 0
Now separate your two parentheses to two separate problems:
(y² + 1) = 0 and (y - 9) = 0
Now you're y² + 1 will equal:
y² = -1
y = √-1 <-- This number doesn't exist so it will be an imaginary number (i). If you guys didn't learn that in your class I recommend just leaving it as i for that part.
Now solve y - 9 = 0:
y = 9 <-- Since we added nine to both sides to get this.
So you're final answer should be y = i and 9
Answers:
x = 2√2 units
y = 2√6 units
Explanation:
The given diagram is a right-angled triangle. This means that the special trig functions can be applied.
These functions are as follows:
sin θ = opposite / hypotenuse
cos θ = adjacent / hypotenuse
tan θ = opposite / adjacent
For getting x and y, we can choose to either work with θ = 30 or θ = 60.
I will work with 30.
1- For x:
We have:
θ = 30
x is the opposite side to θ
4√2 is the hypotenuse
Therefore, we can apply the sine function as follows:
sin θ = opposite / hypotenuse
sin (30) = x / 4√2
x = sin (30) * 4√2
x = 2√2 units
2- For y:
We have:
θ = 30
x is the adjacent side to θ
4√2 is the hypotenuse
Therefore, we can apply the cosine function as follows:
cos θ = adjacent / hypotenuse
cos (30) = y / 4√2
y = cos (30) * 4√2
y = 2√6 units
Hope this helps :)
If you want me to solve for "Y" then, the answer will be,

ir if you want me to solve for "X" instead then the answer will be,

Answer:
one hundred forty-eight ten-thousandths
Step-by-step explanation: