It is actually something standardized more so than theoretical, however in terms of atoms in general the electrons are based on the amount of electronic shells that an atom has and the amount of electrons that atom can accommodate. In the case of sodium, it has three shells with 2 electrons on the first shell which is the maximum, 8 on the second shell which is also the max and 1 on their final shell
So simply put an ATOM of Sodium (Na) has 23 electrons because it has 23 protons which is a fact
<span />
Answer:
See below ~
Explanation:
<u>A to B</u>
⇒ Solid Phase
==========================================================
<u>B to C</u>
⇒ Melting
==========================================================
<u>C to D</u>
⇒ Liquid Phase
==========================================================
<u>D to E</u>
⇒ Vaporizing
============================================================
<u>E to F and beyond</u>
⇒ Gas Phase
Answer:
B. It is important that people are not harmed for the sake of science.
Explanation:
Ethical principles stress the need to do good and cause no harm.A researcher is therefore required to;
- obtain an informed consent from the participants
- minimize or eliminate risk of harm to participants
- protect the anonymity and confidentiality of participants
- Apply no deceptive techniques
- allow the right to withdraw from the study by a participant
The heat of solution is -51.8 kJ/mol
<h3>What is the heat of solution?</h3>
We know that in a calorimeter, there is no loss or gain of energy. It is a good example of a closed system.
Number of moles of KOH = 11.9-g/56 g/mol = 0.21 moles
Temperature rise = 26.0 ∘c
Mass of the water = 100.0 grams
Heat capacity = 4.184 j/g⋅°c
Then;
ΔH = mcθ
ΔH = 100g * 4.184 j/g⋅°c * 26.0 ∘c = 10.88 kJ
Heat of solution = -(10.88 kJ/ 0.21 moles) = -51.8 kJ/mol
Learn more about heat of solution:brainly.com/question/24243878
#SPJ1
Answer:

Explanation:
Hello!
In this case, since the decomposition of sodium hydrogen carbonate is:

Thus, since there is a 2:1 mole ratio between the sodium hydrogen carbonate and sodium carbonate, and the molar masses are 84.01 and 105.99 g/mol respectively, we obtain the following theoretical yield:

Best regards!