C—stems and leaves growing upward?
There are three type of bonds.
Ionic bond, Covalent bond, Polar covalent bonds
This separation technique is a 4-step procedure. First, add H₂SO₄ to the solution. Because of common ion effect, BaSO₄ will not react, only Mg(OH)₂.
Mg(OH)₂ + H₂SO₄ → MgSO₄ + 2 H₂O
The aqueous solution will now contain MgSO₄ and BaSO₄. Unlike BaSO₄, MgSO₄ is soluble in water. So, you filter out the solution. You can set aside the BaSO₄ on the filter paper. To retrieve Mg(OH)₂, add NaOH.
MgSO₄ + 2 NaOH = Mg(OH)₂ + Na₂SO₄
Na₂SO₄ is soluble in water, while Mg(OH)₂ is not. Filter this solution again. The Mg(OH)₂ is retrieved in solid form on the filter paper.
Answer:

Explanation:
Here, we want to calculate the number of formula units in the given molecule
We start by getting the number of moles
To get the number of moles, we have to divide the mass given by the molar mass
The molar mass is the mass per mole
The molar mass of calcium bromide is 200 g/mol
Thus, we have the number of moles as follows:

The number of formula units in a mole is:

The number of formula units in 0.2075 mole will be:
Answer:
The least substituted product (anti-Markovnikov)
Explanation:
The ROOR is used in the addition reaction of HBr to an organic substance (an alkene for example).
In normal conditions (with no ROOR) the adition of the halogen will be performed in the most substituted C (following the rule of Markovnikov that says that the stability increases with the more substituted is the C).
But in presence of ROOR, the reaction takes other mechanism (free radicals), and the product in this case is the one with the Br added in the least substituted C.