1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zimovet [89]
3 years ago
13

Planets close to a star will have __ orbital velocities than planets farther from a star.

Chemistry
1 answer:
Naddika [18.5K]3 years ago
5 0

Answer:

The closer a planet is to the Sun, the stronger the Sun's gravitational pull on it, and the faster the planet moves. The farther it is from the Sun, the weaker the Sun's gravitational pull, and the slower it moves in its orbit.

You might be interested in
For the following electrochemical cell, determine the oxidizing agent, reducing agent, and whether the cell is a voltaic cell or
lyudmila [28]
1637947 d hdidmbdjrn
4 0
3 years ago
A 2.20 mol sample of NO 2 ( g ) is added to a 3.50 L vessel and heated to 500 K. N 2 O 4 ( g ) − ⇀ ↽ − 2 NO 2 ( g ) K c = 0.513
igor_vitrenko [27]

Answer:

[NO₂] = 0.434 M

[N₂O₄] = 0.0971 M

Explanation:

The equilibrum is:  N₂O₄(g)  ⇆  2NO₂ (g)

1 moles of nitrogen (IV) oxide is in equilibrium with 2 moles of nitrogen dioxide.

Initally we only have 2.20 moles of NO₂. So let's write the equilibrium again:

              2NO₂ (g)   ⇆   N₂O₄(g)      

Initially   2.20 mol              -

React          x                      x/2

X amount has reacted, and the half has been formed, according to stoichiometry.

Eq       (2.20-x) / 3.50L     (x/2)/ 3.50L

We divide by the volume because we need molar concentrations. Let's make the Kc's expression:

Kc = [N₂O₄] / [NO₂]²

0.513 = ((x/2)/ 3.50L) /  [(2.20-x) / 3.50L]

0.513 = ((x/2)/ 3.50L) / [(2.20-x)² / 3.50L²]

0.513 = ((x/2)/ 3.50L) / [2.20-x)² / 3.50L²]

0.513 = ((x/2)/ 3.50L) / (4.84 - 4.40x + x²) / 12.25)

0.513 / 12.25 (4.84 - 4.40x + x²) = x/2 / 3.50

0.203 - 0.184x + 0.0419x² = x/2 / 3.50

3.50(0.203 - 0.184x + 0.0419x²) = x/2

7 (0.203 - 0.184x + 0.0419x²) - x = 0

1.421 - 2.288x + 0.2933x² = 0  → Quadratic formula

a = 0.2933 ;  b = -2.288 ; c = 1.421

(-b +- √(b²-4ac)) / (2a)

x₁ = 7.12

x₂ = 0.68 → We consider this value, so we can have a (+) concentration.

Concentrations in the equilibrium are:

[NO₂] = (2.20-0.68) / 3.50 = 0.434 M

[N₂O₄] = (0.68/2) / 3.50  = 0.0971 M

8 0
3 years ago
What is the pH of a solution prepared by dissolving<br>0.8 g NaOH in water to make 200 mL solution?​
Ad libitum [116K]

Answer:

pH>7

Explanation:

bases tend to increase the pH of a solution. since water has the pH of 7 and NaOH has pHof 14, the overall pH of solution will increase.

hope it's helpful.

3 0
3 years ago
Read 2 more answers
Can someone help me with questions 4-5 <br> 21 points
sp2606 [1]

4. describe three ways carbon dioxide was removed from the Earth's atmosphere.

Answer: Forests: Photosynthisis helps clear carbon dioxide naturally, Soils naturally store carbon, but agricultural soils are running a big deficit due to intensive use. Because agricultural land is so expansive, Bio-energy with Carbon Capture and Storage (BECCS) is another way to use photosynthesis to combat climate change. However, it is far more complicated than planting trees or managing soils — and it doesn’t always work for the climate.

5. Explain why there is now 21% Oxygen in the Earth's atomosphere compaired to little or no Oxygen in the Earth's atmosphere 4.5 billion years ago.

Answer: cientists believe that the Earth was formed about 4.5 billion years ago. Its early atmosphere was probably formed from the gases given out by volcanoes. It is believed that there was intense volcanic activity for the first billion years of the Earth's existence.The early atmosphere was probably mostly carbon dioxide, with little or no oxygen. There were smaller proportions of water vapour, ammonia and methane. As the Earth cooled down, most of the water vapour condensed and formed the oceans.

Sorry its soooo long TwT

8 0
3 years ago
The rate constant for this second‑order reaction is 0.610 M − 1 ⋅ s − 1 0.610 M−1⋅s−1 at 300 ∘ C. 300 ∘C. A ⟶ products A⟶product
Darya [45]

Answer: It takes 3.120 seconds for the concentration of  A to decrease from 0.860 M to 0.260 M.

Explanation:

Integrated rate law for second order kinetics is given by:

\frac{1}{a}=kt+\frac{1}{a_0}

k = rate constant = 0.610M^{-1}s^{-1}

a_0 = initial concentration = 0.860 M

a= concentration left after time t = 0.260 M

\frac{1}{0.260}=0.860\times t+\frac{1}{0.860}

t=3.120s

Thus it takes 3.120 seconds for the concentration of  A to decrease from 0.860 M to 0.260 M.

8 0
3 years ago
Other questions:
  • A 1.2 L weather balloon on the ground has a temperature of 25°C and is at atmospheric pressure (1.0 atm). When it rises to an el
    11·1 answer
  • 5. Sodium peroxide reacts vigorously with water in the following unbalanced equation:
    5·1 answer
  • Which best describes the motion of iron atoms in solid iron?
    11·1 answer
  • Which particle cannot be accelerated by the electric or magnetic fields in a particle accelerator?
    9·1 answer
  • Sulfuric acid reacts with aqueous sodium hydroxide to produce aqueous sodium sulfate and liquid water. Which is the correct bala
    12·1 answer
  • The molar heat of vaporization for water is 10.79 kJ/mol. How much energy must be absorbed by 100 grams
    14·1 answer
  • The basis of life on earth is the photosynthesis reaction. Balance the reaction:
    13·1 answer
  • What fraction of 2 years is 10 months <br>​
    10·1 answer
  • The partial symbol for a particular ion is 26M2+ What are the number of electrons contained in one ion
    12·1 answer
  • Calculate the average weight of the dogs listed in the chart below.
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!