Answer:
The correct answer is B.
Explanation:
The molecule of water has 2 atoms of hydrogen and 1 atom of oxygen.
The ratio of masses are given as:

This illustrates the law of definite proportions which is also known as law of constant compositions .
The law states that 'the elements combining to form compound always combine in a fixed ratio by their mass.'
Whereas :
Law of multiple proportion states that when two elements combine with each other to form more than one compounds , the mass of one element with respect to the fixed mass of another element are in ratio of small whole numbers.
Law of conservation of mass states that mass can neither be created nor be destroyed but it can only be transformed from one form to another form.
In a balanced chemical reaction ,total mass on the reactant side must be equal to the total mass on the product side.
Law of conservation of energy states that energy can neither be created nor be destroyed but it can only be transformed from one form to another form.
Answer:
-
419kJ/mol
- 5,0,0,+12
- That catches fire spontaneously
Explanation:
1. Topic: Chemistry
ElementFirst Ionization Energy (kJ/mol) Lithium520Sodium496Rubidium403Cesium376According to the above table, which is most likely to be the first ionization energy for potassium?
2. Topic: Chemistry, Atom
The correct set of four quantum numbers for the valence electrons of the rubidium atom (Z=37) is:
3. Rubidium and cesium are pyrophoric. Here the term pyrophoric means:
- That does not catch fire at all
- That catches fire spontaneously
Answer:
a covalent would be the two that are nonmetals
Answer:
okay.. Questions?????????
Answer:
3.82 x 10²¹ molecules As₂O₃
Explanation:
To find the amount of molecules arsenic (III) oxide (As₂O₃), you need to (1) convert kg to lbs, then (2) convert g As₂O₃ to moles As₂O₃ (via molar mass), and then (3) convert moles to molecules (via Avogadro's number).
1 kilogram = 2.2 lb
Molar Mass (As₂O₃): 2(74.992 g/mol) + 3(15.998 g/mol)
Molar Mass (As₂O₃): 197.978 g/mol
Avogadro's Number:
6.022 x 10²³ molecules = 1 mole
0.0146 g As₂O₃ 1 kg 189 lb
------------------------ x --------------- x ------------------ x ................
1 kg 2.2 lb
1 mole 6.022 x 10²³ molecules
x ------------------ x --------------------------------------- = 3.82 x 10²¹ molecules As₂O₃
197.978 g 1 mole