Answer:
A collapse of the population is rotting, food is not enough and livelihoods have become unfeasible to decrease the number of individuals again.
Another way is to generate mutations to generate a species more vulnerable to decreasing numbers.
In this way the overpopulation is controlled.
Explanation:
In ecosystems, if an increased population breaks the balance of this and begins a new constant adaptation of the extinction of some and overpopulation of others, which may be some chains break or remain unstable.
Answer:
The answer is 6.25g.
Explanation:
First create your balanced equation. This will give you the stoich ratios needed to answer the question:
2C8H18 + 25O2 → 16CO2 + 18H2O
Remember, we need to work in terms of NUMBERS, but the question gives us MASS. Therefore the next step is to convert the mass of O2 into moles of O2 by dividing by the molar mass:
7.72 g / 16 g/mol = 0.482 mol
Now we can use the stoich ratio from the equation to determine how many moles of H2O are produced:
x mol H2O / 0.482 mol O2 = 18 H2O / 25 O2
x = 0.347 mol H2O
The question wants the mass of water, so convert moles back into mass by multiplying by the molar mass of water:
0.347 mol x 18 g/mol = 6.25g
<u>Answer:</u> The expression for equilibrium constant is ![K_{eq}=\frac{[HOCl]^2}{[H_2O][Cl_2]^2}](https://tex.z-dn.net/?f=K_%7Beq%7D%3D%5Cfrac%7B%5BHOCl%5D%5E2%7D%7B%5BH_2O%5D%5BCl_2%5D%5E2%7D)
<u>Explanation:</u>
Equilibrium constant is defined as the ratio of concentration of products to the concentration of reactants each raised to the power their stoichiometric ratios. It is expressed as 
For the general chemical equation:

The expression for
is given as:
![K_c=\frac{[C]^c[D]^d}{[A]^a[B]^b}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BC%5D%5Ec%5BD%5D%5Ed%7D%7B%5BA%5D%5Ea%5BB%5D%5Eb%7D)
For the given chemical reaction:

The expression for
is given as:
![K_{eq}=\frac{[HOCl]^2[HgO.HgCl_2]}{[HgO]^2[H_2O][Cl_2]^2}](https://tex.z-dn.net/?f=K_%7Beq%7D%3D%5Cfrac%7B%5BHOCl%5D%5E2%5BHgO.HgCl_2%5D%7D%7B%5BHgO%5D%5E2%5BH_2O%5D%5BCl_2%5D%5E2%7D)
The concentration of solid is taken to be 0.
So, the expression for
is given as:
![K_{eq}=\frac{[HOCl]^2}{[H_2O][Cl_2]^2}](https://tex.z-dn.net/?f=K_%7Beq%7D%3D%5Cfrac%7B%5BHOCl%5D%5E2%7D%7B%5BH_2O%5D%5BCl_2%5D%5E2%7D)
Answer:
586 kpa(kilopascal/1000 pascals)
Explanation:
given 1.24 atm(standard atmosphere), and 66.7 psi(pound force per square inch).
To find the total pressure we should use dalton's law of partial pressures which is the sum of the pressures of each individual gas.
then we convert them to pascals and divide by 1000 to get the measurement in kilopascal.
knowing that 1 atmosphere is proportional to around 14.696 psi. We can multiply our given measure of atm by that and sum it by psi like so. 1.24×14.6959 = 18.22298.
Then,
18.22298+ 66.7 = 84.92298
psi.
Since 1 psi is proportional to around 6894.76 pascals. 1 psi will be 68.9476 kilopascal. 84.92298 * 6.89476 = 585.523336 ≈ 586
the double helix is hydrogen bonded through the bases only so the bases are inside the helix only
as adenine combines with thymine and guanine with cytosine
phosphate are in the exterior of it
sugar groups constitute the double helix.