Answer:
Option B. 30 KJ.
Explanation:
The following data were obtained from the question:
Temperature (T) = 5000 K
Enthalpy change (ΔH) = – 220 kJ/mol
Change in entropy (ΔS) = – 0.05 KJ/mol•K
Gibbs free energy (ΔG) =...?
The Gibbs free energy, ΔG can be obtained by using the following equation as illustrated below:
ΔG = ΔH – TΔS
ΔG = – 220 – (5000 x – 0.05)
ΔG = – 220 – (– 250)
ΔG = – 220 + 250
ΔG = 30 KJ
Therefore, the Gibbs free energy, ΔG is 30 KJ.
Google it ******** *********
Answer:
6.4 L
Explanation:
When all other variables are held constant, you can use Boyle's Law to find the missing volume:
P₁V₁ = P₂V₂
In this equation, "P₁" and "V₁" represent the initial pressure and volume. "P₂" and "V₂" represent the final pressure and volume. You can find the theoretical volume by plugging the given values into the equation and simplifying.
P₁ = 3.2 atm P₂ = 1.0 atm
V₁ = 2.0 L V₂ = ? L
P₁V₁ = P₂V₂ <----- Boyle's Law
(3.2 atm)(2.0 L) = (1.0 atm)V₂ <----- Insert values
6.4 = (1.0 atm)V₂ <----- Simplify left side
6.4 = V₂ <----- Divide both sides by 1.0
Answer:
D. 15.8atm
Explanation:
Given parameters:
Initial pressure = 13atm
Initial temperature = 34°C = 34 + 273 = 307K
Final temperature = 100°C = 100 + 273 = 373K
Unknown:
Final pressure = ?
Solution:
To solve this problem, we apply a derivation of the combined gas law taking the volume as a constant.
The expression is shown mathematically below;
=
P and T pressure and temperature values
1 and 2 are initial and final states
Insert the parameters and solve for T₂;
=
P₂ = 15.8atm
I believe the problem is just simply asking for us to convert the value from one unit to the other. This case from m^3 to km^3. From the SI units, we know 1 km is equal to 1000 m. We do as follows:
118 m^3 ( 1 km / 1000 m )^3 = 1.18 x 10^-7 km^3