Answer:

Step-by-step explanation:


Let's solve for
in the first equation and then solve for
in the second equation.
I will then use the following identity to get right of the parameter,
:
(Pythagorean Identity).
Let's begin with
.
Subtract 2 on both sides:

Divide both sides by -3:

Now time for the second equation,
.
Subtract 1 on both sides:

Divide both sides by 4:

Now let's plug it into our Pythagorean Identity:




Given that

, then

The slope of a tangent line in the polar coordinate is given by:

Thus, we have:

Part A:
For horizontal tangent lines, m = 0.
Thus, we have:

Therefore, the <span>values of θ on the polar curve r = θ, with 0 ≤ θ ≤ 2π, such that the tangent lines are horizontal are:
</span><span>θ = 0
</span>θ = <span>2.02875783811043
</span>
θ = <span>4.91318043943488
Part B:
For vertical tangent lines,

Thus, we have:

</span>Therefore, the <span>values of θ on the polar curve r = θ, with 0 ≤ θ ≤ 2π, such that the tangent lines are vertical are:
</span>θ = <span>4.91718592528713</span>
Answer:
a i think give me brainliest. good day.
Step-by-step explanation:
Answer: Positive Quadratic
Step-by-step explanation: A positive quadratic will have a minimum value, whereas a negative quadratic will have a maximum value
Answer:
70.3
Step-by-step explanation:
16.872/.24= 70.3