1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Bezzdna [24]
3 years ago
5

A compound contains 40.0% carbon, 6.7% hydrogen, and 53.3% oxygen (by mass). calculate the empirical formula.

Chemistry
1 answer:
Eva8 [605]3 years ago
3 0
C:H:O = 40/12 : 6,7/1 : 53,3/16 = 3,33 : 6,7 : 3,33 ≈ 1 : 2 : 1

CH₂O
You might be interested in
Examine the nuclear reaction: 1 1 H+ 1 0 n -> 2 1 H.
Lera25 [3.4K]
1) Conversion of an isotope one chemical element or an isotope into another chemical element is called as nuclear transmutation.
<span>
2) In a nuclear transmutation reactions</span> can be achieved either due to radioactive decay or  due to nuclear reactions. 

3) In this technique, it is possible to convert a stable element into radioactive atom by bombarding in with high speed particles. The initial stable nuclei is referred as parent nuclei, the fast moving particle is referred as projectile while new element which is formed is called as daughter element.

4) In the present reaction:
                                        <span>1 1 H+ 1 0 n -> 2 1 H
1 1H is a parent nuclei which is bombarded with the fast moving projectile
(1 0 n) to generate a new daughter nuclei (2 1H). </span>
6 0
3 years ago
What is a Cilla ? What does it look like ? (In drawing )
vova2212 [387]

a short microscopic hairlike vibrating structure found in large numbers on the surface of certain cells.

Explanation:

either causing currents in the surrounding fluid, or, in some protozoans and other small organisms, providing propulsion.

3 0
3 years ago
1s^2 2s^2 2p^6 3s^2 3p^6 how many unpaired electrons are in the atom represented by the electron configuration above?
Sedbober [7]
It's a combination of factors:
Less electrons paired in the same orbital
More electrons with parallel spins in separate orbitals
Pertinent valence orbitals NOT close enough in energy for electron pairing to be stabilized enough by large orbital size
DISCLAIMER: Long answer, but it's a complicated issue, so... :)
A lot of people want to say that it's because a "half-filled subshell" increases stability, which is a reason, but not necessarily the only reason. However, for chromium, it's the significant reason.
It's also worth mentioning that these reasons are after-the-fact; chromium doesn't know the reasons we come up with; the reasons just have to be, well, reasonable.
The reasons I can think of are:
Minimization of coulombic repulsion energy
Maximization of exchange energy
Lack of significant reduction of pairing energy overall in comparison to an atom with larger occupied orbitals
COULOMBIC REPULSION ENERGY
Coulombic repulsion energy is the increased energy due to opposite-spin electron pairing, in a context where there are only two electrons of nearly-degenerate energies.
So, for example...
↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−− is higher in energy than
↑
↓
−−−−−

↓
↑
−−−−−

↑
↓
−−−−−
To make it easier on us, we can crudely "measure" the repulsion energy with the symbol
Π
c
. We'd just say that for every electron pair in the same orbital, it adds one
Π
c
unit of destabilization.
When you have something like this with parallel electron spins...
↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−
It becomes important to incorporate the exchange energy.
EXCHANGE ENERGY
Exchange energy is the reduction in energy due to the number of parallel-spin electron pairs in different orbitals.
It's a quantum mechanical argument where the parallel-spin electrons can exchange with each other due to their indistinguishability (you can't tell for sure if it's electron 1 that's in orbital 1, or electron 2 that's in orbital 1, etc), reducing the energy of the configuration.
For example...
↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−− is lower in energy than
↑
↓
−−−−−

↓
↑
−−−−−

↑
↓
−−−−−
To make it easier for us, a crude way to "measure" exchange energy is to say that it's equal to
Π
e
for each pair that can exchange.
So for the first configuration above, it would be stabilized by
Π
e
(
1
↔
2
), but the second configuration would have a
0
Π
e
stabilization (opposite spins; can't exchange).
PAIRING ENERGY
Pairing energy is just the combination of both the repulsion and exchange energy. We call it
Π
, so:
Π
=
Π
c
+
Π
e

Inorganic Chemistry, Miessler et al.
Inorganic Chemistry, Miessler et al.
Basically, the pairing energy is:
higher when repulsion energy is high (i.e. many electrons paired), meaning pairing is unfavorable
lower when exchange energy is high (i.e. many electrons parallel and unpaired), meaning pairing is favorable
So, when it comes to putting it together for chromium... (
4
s
and
3
d
orbitals)
↑
↓
−−−−−
↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−
compared to
↑
↓
−−−−−
↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−
is more stable.
For simplicity, if we assume the
4
s
and
3
d
electrons aren't close enough in energy to be considered "nearly-degenerate":
The first configuration has
Π
=
10
Π
e
.
(Exchanges:
1
↔
2
,
1
↔
3
,
1
↔
4
,
1
↔
5
,
2
↔
3
,

2
↔
4
,
2
↔
5
,
3
↔
4
,
3
↔
5
,
4
↔
5
)
The second configuration has
Π
=
Π
c
+
6
Π
e
.
(Exchanges:
1
↔
2
,
1
↔
3
,
1
↔
4
,
2
↔
3
,
2
↔
4
,
3
↔
4
)
Technically, they are about
3.29 eV
apart (Appendix B.9), which means it takes about
3.29 V
to transfer a single electron from the
3
d
up to the
4
s
.
We could also say that since the
3
d
orbitals are lower in energy, transferring one electron to a lower-energy orbital is helpful anyways from a less quantitative perspective.
COMPLICATIONS DUE TO ORBITAL SIZE
Note that for example,
W
has a configuration of
[
X
e
]
5
d
4
6
s
2
, which seems to contradict the reasoning we had for
Cr
, since the pairing occurred in the higher-energy orbital.
But, we should also recognize that
5
d
orbitals are larger than
3
d
orbitals, which means the electron density can be more spread out for
W
than for
Cr
, thus reducing the pairing energy
Π
.
That is,
Π
W
5 0
2 years ago
Read 2 more answers
The two south pole ends of two magnets are touching. Which of the following can be concluded?
larisa86 [58]

C.Work was required by an outside force.

3 0
3 years ago
Calcium chloride is added to the roadways after a snowstorm. Which colligative property is being showcased here?
vlabodo [156]

Answer:

Option (D) freezing point depression

Explanation:

Calcium chloride is added to the roadways after a snowstorm because it reduces the freezing point of the ice. Further more, it has been observed that the calcium chloride also produces enough heat which enhances the melting of the ice as it produces an exothermic reaction.

6 0
3 years ago
Other questions:
  • When salt dissolves in water, what type of substance is formed? A heterogeneous mixture, because the different components are mi
    12·1 answer
  • An X-ray technician will place a lead cloth over parts of your body when taking an X-ray to protect your cells from being damage
    13·2 answers
  • A 1.0-ml volume of seawater contains about 4.0 3 10212 g of gold. the total volume of ocean water is 1.5 3 1021 l. calculate the
    14·1 answer
  • 0.004 what is the ph solution
    12·1 answer
  • If the temperature of a 5 L sample of gas is lowered from 400k to 200k, what will the resulting volume of the gas be?
    6·1 answer
  • At the normal melting point of NaCl, 801 degrees C, its enthalpy of fusion is 28.8 kJ / mol. The density of the solid is 2.165 g
    10·1 answer
  • What is the name of a solution whose concentration of solute is equal to the maximum concentration that
    15·1 answer
  • What energy is a quarterback’s arm before throwing a pass
    14·2 answers
  • Which element is in the same period as chlorine (Cl) ?
    8·1 answer
  • Which of the following can be represented by a single chemical symbol?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!