Answer:
73.88 g/mol
Explanation:
For this question we have to keep in mind that the unknown substance is a <u>gas</u>, therefore we can use the <u>ideal gas law</u>:

In this case we will have:
P= 1 atm
V= 3.16 L
T = 32 ªC = 305.15 ºK
R= 0.082 
n= ?
So, we can <u>solve for "n"</u> (moles):



Now, we have to remember that the <u>molar mass value has "g/mol"</u> units. We already have the grams (9.33 g), so we have to <u>divide</u> by the moles:


Answer:
1. Changing Beam Material
2. Corrugation
3. Changing Beam form
4. Steel Reinforcing Bars
Explanation:
Changing Beam Material
Some materials are stronger when used in beams than others. Beams made of steel for instance are stronger than beams made of wood. Therefore changing material can improve the strength of the beam. It is quite important to take into account the weights of the material though as different structures have different requirements.
Corrugation.
You can fold the beam into triangular shapes to increase strength. If you look at roofs you will notice that they are folded and this increased their strength. The same logic can be applied to beams.
Changing Beam Form
Another way to make Beams stronger is to change their form or rather their shape. Straight beams are not as strong as I-beams for instance. I-beams look like the capital letter I with the lines at both ends. I-beams are usually used in construction which shows that they are quite strong.
Steel Reinforcing Bars
When placed in concrete beams, Steel Reinforcing Bars which are also called Rebar can help strengthen a beam by helping it withstand the forces of tension. A concrete beam with Rebar inside it is known as Reinforced Concrete.
Answer:o It is important to realise that mixing will be small unless there are electrons in the 4a1 LUMO, this is why NH3 is pyramidal while BH3 is planar! ... This mixing is very strong and stabilises the 3a1 MO substantially and hence NH3 is trigonal pyramidal and not planar.
Explanation:
I believe the answer would be true