Answer:
Answer for A
Explanation:
F1=GmM/r1^2
If r2 becomes r2=5r
F2=GmM/(25r^2)
Multiply with 25 gives to maintain the same force
I.e.,25F2=F1
F2=G(25m)M/25r^2=F1
By the factor 25 would change to increase to same.
Answer:
E_particle = 1,129 10⁻²⁰ J / particle
T= 817.5 K
Explanation:
Energy is a scalar quantity so it is additive, let's look for the total energy of each gas
Gas a
E_a = 2 5000 = 10000 J
Gas b
E_b = 3 8000 = 24000 J
When the total system energy is mixed it is
E_total = E_a + E_b
E_total = 10000 + 24000 = 34000
The total mass is
M = m_a + m_b
M = 2 +3 = 5
The average energy among the entire mass is
E_averge = E_total / M
E_averago = 34000/5
E_average = 6800 J
One mole of matter has Avogadro's number of atoms 6,022 10²³ particles
Therefore, each particle has an energy of
E_particle = E_averag / 6.022 10²³ = 6800 /6.022 10²³
E_particle = 1,129 10⁻²⁰ J / particle
For find the temperature let's use equation
E = kT
T = E / k
T = 1,129 10⁻²⁰ / 1,381 10⁻²³
T = 8.175 102 K
T= 817.5 K
Answer:
The minimum speed required is 5.7395km/s.
Explanation:
To escape earth, the kinetic energy of the asteroid must be greater or equal to its gravitational potential energy:

or

where
is the mass of the asteroid,
is its distance form earth's center,
is the mass of the earth, and
is the gravitational constant.
Solving for
we get:

putting in numerical values gives


in kilometers this is

Hence, the minimum speed required is 5.7395km/s.
The age of a man whose normal blood pressure measures 123 mm of hg
9 years
<h3>What is Quadratic equation ?</h3>
A quadratic equation as an equation of degree 2, meaning that the highest exponent of this function is 2. The standard form of a quadratic equation is y = a
+ bx + c, where a, b, and c are numbers and a cannot be 0
P(A) = 0.006
- 0.02a + 120
123 = 0.006- 0.02a + 120
0=0.006
- 0.02a - 3
you can use the quadratic equation formula to solve for the man's age.
A = (-b ± (
) ) / (2a)
A = (0.02 ±
/ (2*0.006)
A = (0.02 ±
) / 0.012
A = 9 , -5.67
Age of the man will be 9 years
To learn more about quadratic equation here
brainly.com/question/17177510?referrer=searchResults
#SPJ4
Answer:
λ = 6.602 x 10^(-7) m
Explanation:
In a double-slit interference experiment, the distance y of the maximum of order m from the center of the observed interference pattern on the screen is given as ;
y = mλD/d
Where;
D is the distance of the screen from the slits = 6.2 m
d is the distance between the two slits = 0.046 mm = 0.046 x 10^(-3) m
The fringes on the screen are 8.9 cm = 0.089 m apart from each other, this means that the first maximum (m=1) is located at y = 0.089 m from the center of the pattern.
Therefore, from the previous formula we can find the wavelength of the light:
y = mλD/d
So, λ = dy/mD
Thus,
λ = (0.046 x 10^(-3) x 0.089)/(1 x 6.2)
λ = 6.602 x 10^(-7) m