1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rzqust [24]
3 years ago
7

_____ is a property that determines how much current will flow for a given source voltage, whereas a _____ is a device that cont

rols the current in a circuit
Physics
2 answers:
const2013 [10]3 years ago
5 0

“RESISTANCE” is a property that determines how much current will flow for a given source voltage, whereas a “RESISTOR” is a device that controls the current in a circuit.

andre [41]3 years ago
4 0

The property which determines the amount of current to be flown for a given source voltage is the Resistance and the device which controls it is the Resistor.

<u>Explanation: </u>

The resistance is the property of an electric circuit which can resist the flow of current across the circuit. Similarly, to keep in check the current of an electric circuit, resistor is used as a device, which has a predetermined or preset amount of electrical resistance. The resistance unit is ohm.  

You might be interested in
1. What types of elements does an ionic bond occur between?
sweet [91]

Answer:

Ionic bonds form when a nonmetal and a metal exchange electrons, while covalent bonds form when electrons are shared between two nonmetals. An ionic bond is a type of chemical bond formed through an electrostatic attraction between two oppositely charged ions.

Explanation:

6 0
4 years ago
answers Collision derivation problem. If the car has a mass of 0.2 kg, the ratio of height to width of the ramp is 12/75, the in
Natasha2012 [34]

Answer:

4.8967m

Explanation:

Given the following data;

M = 0.2kg

∆p = 0.58kgm/s

S(i) = 2.25m

Ratio h/w = 12/75

Firstly, we use conservation of momentum to find the velocity

Therefore, ∆p = MV

0.58kgm/s = 0.2V

V = 0.58/2

V = 2.9m/s

Then, we can use the conservation of energy to solve for maximum height the car can go

E(i) = E(f)

1/2mV² = mgh

Mass cancels out

1/2V² = gh

h = 1/2V²/g = V²/2g

h = (2.9)²/2(9.8)

h = 8.41/19.6 = 0.429m

Since we have gotten the heigh, the next thing is to solve for actual slant of the ramp and initial displacement using similar triangles.

h/w = 0.429/x

X = 0.429×75/12

X = 2.6815

Therefore, by Pythagoreans rule

S(ramp) = √2.68125²+0.429²

S(ramp) = 2.64671

Finally, S(t) = S(ramp) + S(i)

= 2.64671+2.25

= 4.8967m

3 0
3 years ago
In each case the momentum before the collision is: (2.00 kg) (2.00 m/s) = 4.00 kg * m/s
Ivan

Answer:

Check Explanation.

Explanation:

Momentum before collision = (2)(2) + (2)(0) = 4 kgm/s

a) Scenario A

After collision, Mass A sticks to Mass B and they move off with a velocity of 1 m/s

Momentum after collision = (sum of the masses) × (common velocity) = (2+2) × (1) = 4 kgm/s

Which is equal to the momentum before collision, hence, momentum is conserved.

Scenario B

They bounce off of each other and move off in the same direction, mass A moves with a speed of 0.5 m/s and mass B moves with a speed of 1.5 m/s

Momentum after collision = (2)(0.5) + (2)(1.5) = 1 + 3 = 4.0 kgm/s

This is equal to the momentum before collision too, hence, momentum is conserved.

Scenario C

Mass A comes to rest after collision and mass B moves off with a speed of 2 m/s

Momentum after collision = (2)(0) + (2)(2) = 0 + 4 = 4.0 kgm/s

This is equal to the momentum before collision, hence, momentum is conserved.

b) Kinetic energy is normally conserved in a perfectly elastic collision, if the two bodies do not stick together after collision and kinetic energy isn't still conserved, then the collision is termed partially inelastic.

Kinetic energy before collision = (1/2)(2.00)(2.00²) + (1/2)(2)(0²) = 4.00 J.

Scenario A

After collision, Mass A sticks to Mass B and they move off with a velocity of 1 m/s

Kinetic energy after collision = (1/2)(2+2)(1²) = 2.0 J

Kinetic energy lost = (kinetic energy before collision) - (kinetic energy after collision) = 4 - 2 = 2.00 J

Kinetic energy after collision isn't equal to kinetic energy before collision. This collision is evidently totally inelastic.

Scenario B

They bounce off of each other and move off in the same direction, mass A moves with a speed of 0.5 m/s and mass B moves with a speed of 1.5 m/s

Kinetic energy after collision = (1/2)(2)(0.5²) + (1/2)(2)(1.5²) = 0.25 + 3.75 = 4.0 J

Kinetic energy lost = 4 - 4 = 0 J

Kinetic energy after collision is equal to kinetic energy before collision. Hence, this collision is evidently elastic.

Scenario C

Mass A comes to rest after collision and mass B moves off with a speed of 2 m/s

Kinetic energy after collision = (1/2)(2)(0²) + (1/2)(2)(2²) = 4.0 J

Kinetic energy lost = 4 - 4 = 0 J

Kinetic energy after collision is equal to kinetic energy before collision. Hence, this collision is evidently elastic.

c) An impossible outcome of such a collision is that A stocks to B and they both move off together at 1.414 m/s.

In this scenario,

Kinetic energy after collision = (1/2)(2+2)(1.414²) = 4.0 J

This kinetic energy after collision is equal to the kinetic energy before collision and this satisfies the conservation of kinetic energy.

But the collision isn't possible because, the momentum after collision isn't equal to the momentum before collision.

Momentum after collision = (2+2)(1.414) = 5.656 kgm/s

which is not equal to the 4.0 kgm/s obtained before collision.

This is an impossible result because in all types of collision or explosion, the second law explains that first of all, the momentum is always conserved. And this evidently violates the rule. Hence, it is not possible.

6 0
3 years ago
When applied behavior analysis is used properly what happens???​
evablogger [386]

Answer:

Applied Behavior Analysis therapy (ABA) is a type of intensive therapy that focuses on the principles and techniques of learning theory to help improve social behavior. ABA therapy helps to (1) develop new skills, (2) shape and refine previously learned skills, and (3) decrease socially significant problem behaviors.

Explanation:

4 0
3 years ago
El Sol está en promedio a 93 millones de millas de la Tierra. ¿A cuántos metros equivale esto? Expréselo usando potencias de die
mars1129 [50]
Hola!

93 millones de millas equivalen a 1,50 x 10¹¹ metros. 

Para calcular este valor, necesitamos saber la equivalencia entre millas y metros (1 milla=1609,34m), y aplicar el siguiente factor de conversión. Para expresar el resultado en potencias de 10, se debe correr la coma a la izquierda hasta obtener un valor de una sola unidad y multiplicar este valor por 10 elevado a la cantidad de espacios que la coma se tuvo que correr a la izquierda:

93000000millas*\frac{1609,34 metros}{1milla}=150000000000,0 metros=1,50* 10^{11} metros

Saludos!
5 0
3 years ago
Other questions:
  • A 67 Vrms source is placed across a load that consists of a 12 ohm resistor in series with an capacitor whose reactance is 5 ohm
    15·1 answer
  • You were driving your car to UTD at a speed of 35 miles per hour. You stopped at the FloydCampbell intersection with the signal
    8·1 answer
  • Which best explains why the shape of a liquid can change?
    11·2 answers
  • I have the freedom of speech guaranteed by the 1st Amendment in the US Constitution; can I say whatever I want, whenever I want?
    8·1 answer
  • Two boats start together and race across a 48-km-wide lake and back. boat a goes across at 48 km/h and returns at 48 km/h. boat
    9·1 answer
  • 0.001225 kg/L x 720 000 000L =?
    7·1 answer
  • A force of 99 N causes a box to accelerate at a rate of 11 m/s2. What is the mass of the box? (Ignore frictional effects.)
    8·1 answer
  • On which side of a house in Texas should a window be placed so that the people inside the house can see
    6·2 answers
  • name a type of relationship between current and potental difference for a resistor at constant temperature
    6·2 answers
  • Mass of a car is given as 6000 kg is moving with a velocity of 40 m/s. Calculate the momentum of the car
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!