Answer:

Explanation:
For this problem, we can use Boyle's law, which states that for a gas at constant temperature, the product between pressure and volume remains constant:

which can also be rewritten as

In our case, we have:
is the initial pressure
is the initial volume
is the final pressure
Solving for V2, we find the final volume:

Thank you for posting
your question here at brainly. Feel free to ask more questions.
<span>The
best and most correct answer among the choices provided by the question is B.
Reaches a max height of
8.25 feet after 0.63 seconds</span>
.
<span><span>
</span><span>Hope my answer would be a great help for you. </span> </span>
<span> </span>
Answer:
(a) 0.3778 eV
(b) Ratio = 0.0278
Explanation:
The Bohr's formula for the calculation of the energy of the electron in nth orbit is:

(a) The energy of the electron in n= 6 excited state is:


Ionisation energy is the amount of this energy required to remove the electron. Thus, |E| = 0.3778 eV
(b) For first orbit energy is:




Ratio = 0.0278
Explanation:
If we assume negligible air resistance and heat loss, we can assume that all of the Gravitational potential energy of the ball will turn into Kinetic energy as it falls toward the ground.
Therefore our Kinetic energy = mgh = (10kg)(9.81N/kg)(100m) = 9,810J.