Answer:
Explanation:
If a baseball is hit into the air with a velocity of 27 m/s, we want to determine the maximum height of the ball. Using the projecile formula;
Max height H = u²/2g
u is the initial velocity of the body = 27m/s
g is the acceleration due to gravity = 9.81m/s²
H = 27²/2(9.81)
H = 729/19.62
H = 37.16m
Hence the ball went 37.16m high
It a because I learn it in class today
Answer:
This value is less than the maximum tension of 500 lbs, making it safe for man to go to the tip flap
Explanation:
We must work on this problem using the rotational equilibrium equations and then they compared the tension values that the cable supports.
Let's start with fixing a reference system on the hinge of the flag, we take as positive the anti-clockwise turn
They indicate the weight of the pole W₁ = 120 lb and a length of L = 9 ft, the weight of the man W₂ = 150, we assume that the cable is at the tip of the pole
-
L + W₂ L + W₁ L / 2 = 0
T_{y} = W₂ + W₁ / 2
T_{y} = 120 + 150/2
T_{y} = 195 lb
we use trigonometry to find the cable tension
sin 30 = T_{y} / T
T = T_{y} / sin 30
T = 195 / sin 30
T = 390 lb
This value is less than the maximum tension of 500 lbs, making it safe for man to go to the tip flap
T < 500 lb
This is known as Wien's Law:
The relationship is:
wavelength = 0.0029/temperature
It is an inversely proportional relationship.