A solar eclipse occurs when the moon crosses in front of the Sun, blocking some or all of its rays. A lunar eclipse happens when the moon is directly behind the earth, blocking the moon from receiving light. The only light comes from the light on earth's reflected shadow.
You can look at a lunar eclipse because there is very little light or none at all. You can't look at a solar eclipse because you are looking directly at the sun unless it is complete. Before totality, only some of the Sun is blocked, causing your pupils dilate to let in more light. Since they do this, more of the Sun's rays can be let in to the eye, which effectively allows your eyes to burn.
Some doctors and eye care specialists say that after someone complains of blindness after looking at a solar eclipse unaided, they can see what the Sun and moon looked like at the time that they looked at it, as it is burned onto their retinas.
Answer:
The answer is 4200 J.
Explanation:
The formula of work done is, W = F×D where F is the force of an object and D is the distance. Then you just substitute the values into the equation :
W = F×D
F = 42N
D = 100m
W = 42 × 100
= 4200 J
Get a direct answer of what???
Kinetic energy=1/2mv^2
=1/2(142*10^-3)(42.9)^2=130.6=131J
Decreasing the distance between two objects having a considerable mass would increase the attraction on gravitation. The reverse is true that if you separate or inrease the objects distance would substantially decrease their gravitational attraction. Most object in our planet is held by its gravitational force towards it's center.