Answer:
e). 
Explanation:
As we know that wheel is turned by 90 degree angle
so the angular speed of the wheel is given as

now we have


now the centripetal acceleration of the point P is given as



tangential acceleration is given as



now net acceleration is given as



It will not be carried to children ... because genetic defect can be carried to children, not the defect during his lifetime
Answer:
The answers are in the explanation section below
Explanation:
1) The generalization that can be made from the exploration is that as we move away from the positive electrode, the potential energy gets lower. If we move away from the negative electrode, then the potential energy becomes higher.
2) The positive test charge will have the least potential energy when it gets to the negative electrode point.
3) To move one electron 1m in a direction along one of the equal potential lines, there is no energy needed. Zero work will be required for a charge to move on the equipotential line.
4) If lightning strikes a tree 20m away, it would be better to face the tree or have our back facing the tree. This is because the equipotential line will be present at the point where our body stands, this will protect from electric shock.
The pattern to be sketched is attached.
Answer: Resonance in sound is when one object is vibrating at the same frequency to the second object of forces to the second frequency.
Explanation:
"Acoustic resonance is a phenomenon in which an acoustic system amplifies sound waves whose frequency matches one of its own natural frequencies of vibration (its resonance frequencies)." wikipedia I hope this helps you!
We can salve the problem by using the formula:

where F is the force applied, k is the spring constant and x is the stretching of the spring.
From the first situation we can calculate the spring constant, which is given by the ratio between the force applied and the stretching of the spring:

By using the value of the spring constant we calculated in the first step, we can calculate the new stretching of the spring when a force of 33 N is applied:
