Answer:
he formula for the gravitational force includes the gravitational constant, which has a value . The unit of the gravitational force is Newtons (N). Fg = gravitational force between two objects ( ) G = gravitational constant ( ) m1 = mass of the first object (kg)
Explanation:
brainlist ?
<span>d
The mass is doubled which means that both the momentum and kinetic energy are also doubled. Also the normal force that's acting along with the coefficient of kinetic friction is also doubled. So the friction that's working to slow down the crate is doubled. So the crate will have double the kinetic energy that needs to be dissipated, but the rate of dissipation is also doubled, so the total time required to dissipate the kinetic energy is the same. And since both crates start out with the same velocity and since they'll lose energy (and velocity) at the same proportional rate, they'll take the same distance to slide to a stop.</span>
<span> Weight = mass x acceleration
Earths acceleration is 9.8 m/s*2
1 kg = 2.2 lbs, so 2.0 lbs x 1 kg/2.2 lbs = 0.91 kg
The bag would have a weight of 9.8 x 0.91 = 8.9 N
1. 8.9 x 1/6 = 1.5 N
2. 8.9 x 2.64 = 23.5 N
The mass of the bag at all three locations is 0.91 kg. Mass does not change, the different locations only change its weight. </span>
I think it should be option (b)
An electromagnet is a type of magnet in which the magnetic field is produced using the current. The simplest form of an electromagnet is a wire wrapped around in a coil.
The strength of magnetic field of such magnet is given with this equation:

Where N is the number of loops in the coil, I is the strength of the current flowing through the coil, L is the length of the coil, and

is <span>permeability of the electromagnet core material.
From this equation, we can see that increasing both the current and number of loops will increase the strength of the magnet.
Both BLANKS should be
Increase. When you use the additional battery you will have more voltage and more voltage means more electricity.</span>