Answer:
The time is 0.563 ns.
Explanation:
Given that,
Index of refraction of glass = 1.41
Distance = 12.0 cm
Angle = 33.0°
We need to calculate the refraction angle
Using Snell's law

put the value into the formula



We need to calculate the velocity of beam in glass
Using formula of velocity

Put the value into the formula


We need to calculate the time
Using formula of distance





Hence, The time is 0.563 ns.
Answer:
e jiio7ruetw5258o0pomnmitwq2690okm ,,kkkiiht44456
downward force then reaction if you mean what forces
Answer:
Bottom of the circle.
Explanation:
At the top of the circle the tension and the weight contribute on being the centripetal force, at the middle of the circle only the tension contributes on being the centripetal force (the weight being perpendicular to it), while <u>at the bottom</u> of the circle the tension contributes on being the centripetal force (as always) <em>but the weight against to it</em>, so here is where the tension must be greater to allow the same centripetal force as the other cases, thus here is where the string will break.
Answer:
Second drop: 1.04 m
First drop: 1.66 m
Explanation:
Assuming the droplets are not affected by aerodynamic drag.
They are in free fall, affected only by gravity.
I set a frame of reference with the origin at the nozzle and the positive X axis pointing down.
We can use the equation for position under constant acceleration.
X(t) = x0 + v0 * t + 1/2 * a *t^2
x0 = 0
a = 9.81 m/s^2
v0 = 0
Then:
X(t) = 4.9 * t^2
The drop will hit the floor when X(t) = 1.9
1.9 = 4.9 * t^2
t^2 = 1.9 / 4.9

That is the moment when the 4th drop begins falling.
Assuming they fall at constant interval,
Δt = 0.62 / 3 = 0.2 s (approximately)
The second drop will be at:
X2(0.62) = 4.9 * (0.62 - 1*0.2)^2 = 0.86 m
And the third at:
X3(0.62) = 4.9 * (0.62 - 2*0.2)^2 = 0.24 m
The positions are:
1.9 - 0.86 = 1.04 m
1.9 - 0.24 = 1.66 m
above the floor