Answer:
(-1,-2)
Step-by-step explanation:
I graphed the equation on the graph below so you can see that (-1,-2) is a solution.
Answer:
We need a sample size of least 119
Step-by-step explanation:
In a sample with a number n of people surveyed with a probability of a success of
, and a confidence level of
, we have the following confidence interval of proportions.

In which
z is the zscore that has a pvalue of
.
The margin of error is:

95% confidence level
So
, z is the value of Z that has a pvalue of
, so
.
Sample size needed
At least n, in which n is found when 
We don't know the proportion, so we use
, which is when we would need the largest sample size.






Rounding up
We need a sample size of least 119
Answer:
512 ounces
Step-by-step explanation:
Substitute x with the members of the domain.
f(x) = 5x² + 4
Substitute with the domain of -4
f(x) = 5x² + 4
f(-4) = 5(-4)² + 4
f(-4) = 5(16) + 4
f(-4) = 80 + 4
f(-4) = 84
Substitute with the domain of -2
f(x) = 5x² + 4
f(-2) = 5(-2)² + 4
f(-2) = 5(4) + 4
f(-2) = 20 + 4
f(-2) = 24
Substitute with the domain of 0
f(x) = 5x² + 4
f(0) = 5(0)² + 4
f(0) = 5(0) + 4
f(0) = 0 + 4
f(0) = 4
Substitute with the domain of 1.5
f(x) = 5x² + 4
f(1.5) = 5(1.5)² + 4
f(1.5) = 5(2.25) + 4
f(1.5) = 11.25 + 4
f(1.5) = 15.25
Substitute with the domain of 4
f(x) = 5x² + 4
f(4) = 5(4)² + 4
f(4) = 5(16) + 4
f(4) = 80 + 4
f(4) = 84
The range of the function for those domain is {4, 24, 15.25, 84}