1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
frutty [35]
3 years ago
12

Slope -3/8y+-3/4x=12

Mathematics
1 answer:
grandymaker [24]3 years ago
6 0

Answer:

=

10 − 2 7 - 3

Step-by-step explanation:

You might be interested in
The one wirh my mouse over js 55
musickatia [10]

Answer:

55 is the answer

Step-by-step explanation:

180-76-49= 55 !!!!!

3 0
3 years ago
Read 2 more answers
How can 6(5 + 9) be expressed using the distributive property?
Vilka [71]
D. (6 + 5) x (5 + 9)
6 0
3 years ago
Find the equation of the line between the points (10, – 5) and ( - 2,0).
Natali5045456 [20]

Answer <u>(assuming it can be in slope-intercept form)</u>:

y = -\frac{5}{12} x-\frac{5}{6}  

Step-by-step explanation:

1) First, find the slope of the line between the two points by using the slope formula, m  = \frac{y_2-y_1}{x_2-x_1}. Substitute the x and y values of the given points into the formula and solve:

m = \frac{(0)-(-5)}{(-2)-(10)} \\m = \frac{0+5}{-2-10} \\m=\frac{5}{-12}

Thus, the slope of the line is -\frac{5}{12}.

2) Next, use the point-slope formula y-y_1 = m (x-x_1) to write the equation of the line in point-slope form. Substitute values for m, x_1, and y_1 in the formula.

Since m represents the slope, substitute -\frac{5}{12} in its place. Since x_1 and y_1 represent the x and y values of one point the line intersects, choose any of the given points (it doesn't matter which one, it will equal the same thing) and substitute its x and y values into the formula as well. (I chose (-2,0), as seen below.) Then, isolate y and expand the right side in the resulting equation to find the equation of the line in slope-intercept form:

y-(0)=-\frac{5}{12} (x-(-2))\\y-0 = -\frac{5}{12} (x+2)\\y = -\frac{5}{12} x-\frac{5}{6}

3 0
3 years ago
What is the value of 6(2b-4) when b =5
Sindrei [870]

Answer: The value of 6(2b-4) is 36.


Step-by-step explanation:

Given expression: 6(2b-4)

To find the value of 6(2b-4) at b= 5, we need to substitute the b=5 in the expression, we get

6(2(5)-4)\\=6(10-4).......[\text{solve parentheses}]\\=6(6)\\=6\times6=36

\\\Rightarrow6(2(5)-4)=36

Therefore, the value of  6(2b-4) is 36, when b=5.

5 0
4 years ago
Read 2 more answers
Can someone check whether its correct or no? this is supposed to be the steps in integration by parts​
Gwar [14]

Answer:

\displaystyle - \int \dfrac{\sin(2x)}{e^{2x}}\: \text{d}x=\dfrac{\sin(2x)}{4e^{2x}}+\dfrac{\cos(2x)}{4e^{2x}}+\text{C}

Step-by-step explanation:

\boxed{\begin{minipage}{5 cm}\underline{Integration by parts} \\\\$\displaystyle \int u \dfrac{\text{d}v}{\text{d}x}\:\text{d}x=uv-\int v\: \dfrac{\text{d}u}{\text{d}x}\:\text{d}x$ \\ \end{minipage}}

Given integral:

\displaystyle -\int \dfrac{\sin(2x)}{e^{2x}}\:\text{d}x

\textsf{Rewrite }\dfrac{1}{e^{2x}} \textsf{ as }e^{-2x} \textsf{ and bring the negative inside the integral}:

\implies \displaystyle \int -e^{-2x}\sin(2x)\:\text{d}x

Using <u>integration by parts</u>:

\textsf{Let }\:u=\sin (2x) \implies \dfrac{\text{d}u}{\text{d}x}=2 \cos (2x)

\textsf{Let }\:\dfrac{\text{d}v}{\text{d}x}=-e^{-2x} \implies v=\dfrac{1}{2}e^{-2x}

Therefore:

\begin{aligned}\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x & =\dfrac{1}{2}e^{-2x}\sin (2x)- \int \dfrac{1}{2}e^{-2x} \cdot 2 \cos (2x)\:\text{d}x\\\\& =\dfrac{1}{2}e^{-2x}\sin (2x)- \int e^{-2x} \cos (2x)\:\text{d}x\end{aligned}

\displaystyle \textsf{For }\:-\int e^{-2x} \cos (2x)\:\text{d}x \quad \textsf{integrate by parts}:

\textsf{Let }\:u=\cos(2x) \implies \dfrac{\text{d}u}{\text{d}x}=-2 \sin(2x)

\textsf{Let }\:\dfrac{\text{d}v}{\text{d}x}=-e^{-2x} \implies v=\dfrac{1}{2}e^{-2x}

\begin{aligned}\implies \displaystyle -\int e^{-2x}\cos(2x)\:\text{d}x & =\dfrac{1}{2}e^{-2x}\cos(2x)- \int \dfrac{1}{2}e^{-2x} \cdot -2 \sin(2x)\:\text{d}x\\\\& =\dfrac{1}{2}e^{-2x}\cos(2x)+ \int e^{-2x} \sin(2x)\:\text{d}x\end{aligned}

Therefore:

\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{2}e^{-2x}\sin (2x) +\dfrac{1}{2}e^{-2x}\cos(2x)+ \int e^{-2x} \sin(2x)\:\text{d}x

\textsf{Subtract }\: \displaystyle \int e^{-2x}\sin(2x)\:\text{d}x \quad \textsf{from both sides and add the constant C}:

\implies \displaystyle -2\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{2}e^{-2x}\sin (2x) +\dfrac{1}{2}e^{-2x}\cos(2x)+\text{C}

Divide both sides by 2:

\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{4}e^{-2x}\sin (2x) +\dfrac{1}{4}e^{-2x}\cos(2x)+\text{C}

Rewrite in the same format as the given integral:

\displaystyle \implies - \int \dfrac{\sin(2x)}{e^{2x}}\: \text{d}x=\dfrac{\sin(2x)}{4e^{2x}}+\dfrac{\cos(2x)}{4e^{2x}}+\text{C}

5 0
2 years ago
Other questions:
  • Please help me, solve for y 2x-y=5
    11·1 answer
  • Which ordered pair is a solution to the system of inequalities? y &lt;3 and y &gt;-x+5 ?
    5·1 answer
  • 10. Which of the following functions is the inverse of the function {(1,2).(3,4).(6,8)) ? (1 point)
    14·1 answer
  • I need help with this STAAR practice
    14·2 answers
  • I thought of a number. I subtracted 15 from my number, then divided the result by 5, and I got 9. What is my number?
    11·1 answer
  • A theater sells adult tickets and student tickets. A total of 210 tickets are sold and the ratio of adult tickets sold to studen
    15·1 answer
  • 5. y=12<br> Point:<br> Slope:<br> What are or is the point. And what’s the slope
    9·1 answer
  • Which of the following describes the way substances diffuse in and out of a cell?
    7·2 answers
  • Simplify 2/5 (5w + 10 )
    14·2 answers
  • HELP ASAP<br> thanks you
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!