Answer:
Can you move a body in rigor mortis?
Rigor mortis -- the lay version of it is stiffening of the joints. It really had nothing to do with the joints. It's the lack of chemical in the body, ATP, which is Adenosine Triphosphate. It goes away and you can now move the extremities easily after rigor mortis is gone away.
Explanation:
Answer:
A)
<u>4, 7, 4, 6</u>
B)
<u>12 moles</u>
Explanation:

__↑______↑
8.00 mol | 14.00 mol
________________

You can turn this into a system of variables which are solvable.
To do this, create variables for the coefficients of each compound in the reaction respectively.

Because to be balanced, the count of atoms in each element of the compound correspond to the coefficient of the variable in that compound so that the count of the left (reactant) side is set equal to the right (product) side.
a corresponds to the coefficient of the first compound, b corresponds to the coefficient of the second compound, c corresponds to the coefficient of the third compound, and d corresponds to the coefficient of the fourth compound.
(Reactant = Product)
Reactant: 1a [N] Product: 1c.
Reactant: 3a [H] Product: 2d.
Reactant: 2b [O] Product: 2c + 1d.
Thus the system is:
1a = 1c
3a = 2d
2b = 2c + 1d.
Then just use the substitution methods to solve.
Answer:
(C) The average molecular speed of ethane is equal to the average molecular speed of propanol.
Explanation:
When dealing with gases, you know that the temperature and speed are related. When held at a constant temperature, the speed is also held constant. We also know that ideal gases behave the same despite their identities.
Answer:
Option B, Because of the reversible nature of crystallizing and dissolving
Explanation:
Solution containing the maximum amount of solute that can be dissolved in the given solvent at the particular temperature is called saturated solution.
Reversible reaction is the reaction which can go in reverse and forward direction both on varying reaction condition.
In the saturated NaCl solution, on lowering temperature, The the dissolved NaCl molecules may crystallize. Likewise on increasing temperature, the crystallized crystals may dissolved. As the reaction moves in both the direction, therefore its considered to be equilibrium system.
Therefore, amog given, option B is correct.
Because of the reversible nature of crystallizing and dissolving