Answer:
6.2 moles of K2CO3 can be converted to 856.8741 grams.
Answer:
c. 15 g Kr
Explanation:
The amount of a gas (Moles) is directely proportional to its pressure. That means the higher amount of moles, the highest pressure and vice versa.
Using molar mass of the compounds (Ne=20.2g/mol, Ar = 39.9g/mol, Kr = 83.8g/mol, CO₂ = 44 g/mol and F₂ = 38.0g/mol), moles of 15.0g of each gas are:
Ne = 15g ₓ (1mol / 20.2g) = <em>0.74 moles of Ne</em>
Ar = 15g ₓ (1mol / 39.9g) = <em>0.38 moles of Ar</em>
Kr = 15g ₓ (1mol / 83.8g) = <em>0.18 moles of Kr</em>
CO₂ = 15g ₓ (1mol / 44g) = <em>0.34 moles of CO₂</em>
F₂ = 15g ₓ (1mol / 38g) = <em>0.39 moles of F₂</em>
<h3>As 15g of Kr contains the less quantity of moles, this sample will con have the lowest pressure</h3>
True i really don’t feel like giving an explanation but trust me it’s trye
Nitrous acid, hno2, has an acid dissociation constant - ka of 7. 1 ✕ 10-4. what are [h3o ], [no2-], and [oh -] in 0. 40 m hno2 - 4829 M [OH^-] = 1.439 x 10^-14 M
The acid dissociation constant (Ka) is used to differentiate between strong and weak acids. Strong acids have very high Ka values. The Ka value is determined by examining the equilibrium constant for acid dissociation. The acid dissociates more readily as the Ka increases.
The original molecular definition of an acid, according to Arrhenius, is a molecule that dissociates in an aqueous solution, releasing the hydrogen ion H+ (a proton): HA A + H+. acid dissociation constant is an equilibrium constant for this dissociation reaction.
To learn more about acid dissociation constant please visit -
brainly.com/question/4363472
#SPJ4