I am almost positive that it was, ISSAC NEWTON
<span>10 hertz
Hertz is the frequency of oscillation which is the number of oscillations per second. So if something takes 0.10 s per oscillation, divide 1 second by the period to get the frequency. So
1 / 0.10s = 10 1/s = 10 Hertz
Therefore the object is vibrating at 10 hertz.</span>
TLDR: It will reach a maximum when the angle between the area vector and the magnetic field vector are perpendicular to one another.
This is an example that requires you to investigate the properties that occur in electric generators; for example, hydroelectric dams produce electricity by forcing a coil to rotate in the presence of a magnetic field, generating a current.
To solve this, we need to understand the principles of electromotive forces and Lenz’ Law; changing the magnetic field conditions around anything with this potential causes an induced current in the wire that resists this change. This principle is known as Lenz’ Law, and can be described using equations that are specific to certain situations. For this, we need the two that are useful here:
e = -N•dI/dt; dI = ABcos(theta)
where “e” describes the electromotive force, “N” describes the number of loops in the coil, “dI” describes the change in magnetic flux, “dt” describes the change in time, “A” describes the area vector of the coil (this points perpendicular to the loops, intersecting it in open space), “B” describes the magnetic field vector, and theta describes the angle between the area and mag vectors.
Because the number of loops remains constant and the speed of the coils rotation isn’t up for us to decide, the only thing that can increase or decrease the emf is the change in magnetic flux, represented by ABcos(theta). The magnetic field and the size of the loop are also constant, so all we can control is the angle between the two. To generate the largest emf, we need cos(theta) to be as large as possible. To do this, we can search a graph of cos(theta) for the highest point. This occurs when theta equals 90 degrees, or a right angle. Therefore, the electromotive potential will reach a maximum when the angle between the area vector and the magnetic field vector are perpendicular to one another.
Hope this helps!
Answer:
1225 J
Explanation:
The Gravitational potential energy (PEG) gained by a mass lifted above the ground is given by

where
m is the mass
g = 9.8 m/s^2 is the acceleration due to gravity
h is the height at which the object has been lifted
In this problem, we have
m = 250 kg
h = 0.5 m
So, the PE of the object is

Answer:
The fence is 5feet less.
Explanation:
We need to determine
The less amount of fence required, if the enclosure has full width and reduced length, compared to full length and reduced width.
Approach & WorkingArea of lawn = 30 × 403/4th of the area of lawn = ¾(30 × 40) = 30 * 30
When full width will be fenced, and reduced length will be fenced.
Width = 30 feet30 * L = 30 * 30Hence, length = 30 feetLength of fence needed = 2(30 + 30) = 120 feet
When full length will be fenced, and reduced width will be fenced
Length = 40 feet40 * W = 30 * 30W = 22.5 feetLength of fence needed = 2(40 + 22.5) = 125 feet
Difference in length of fence needed = 125 – 120 = 5 feet.