Hello!
We can use the kinematic equation:

a = acceleration (m/s²)
vf = final velocity (45 m/s)
vi = initial velocity (25 m/s)
t = time (5 sec)
Plug in the givens:

Answer:
"h" signifies Planck's constant
Explanation:
In the equation energy E = h X v
The "h" there signifies Planck's constant
Planck's constant is a value, that shows the rate at which the energy of a photon increases/decreases, as the frequency of its electromagnetic wave changes.
It was named after Max Planck who discovered this unique relationship between the energy of a light wave and its frequency.
Planck's constant, "h" is usually expressed in Joules second
Planck's constant = 
To find the ratio of planetary speeds Va/Vb we need the orbital velocity formula:
V=√({G*M}/R), where G is the gravitational constant, M is the mass of the distant star and R is the distance of the planet from the star it is orbiting.
So Va/Vb=[√( {G*M}/Ra) ] / [√( {G*M}/Rb) ], in our case Ra = 7.8*Rb
Va/Vb=[ √( {G*M}/{7.8*Rb} ) ] / [√( {G*M}/Rb )], we put everything under one square root by the rule: (√a) / (√b) = √(a/b)
Va/Vb=√ [ { (G*M)/(7.8*Rb) } / { (G*M)/(Rb) } ], when we cancel out G, M and Rb we get:
Va/Vb=√(1/7.8)/(1/1)=√(1/7.8)=0.358 so the ratio of Va/Vb = 0.358.
Answer:
1000 mph
Explanation:
P = Perimeter = 24000 mi
r = Radius of the equator
t = Time taken to complete one rotation = 24 h
Perimeter of a circle is given by

Angular speed is given by

Velocity if given by

The person would be going at a speed of 1000 mph
Potential Energy = mgh,
where m = mass in kg, g ≈ 10 m/s², h = height above ground = 8 m
PE = mgh
= 70*10*8 = 5600 J