Answer:
The net force acting on the object is doubled while the mass of the object is held constant. What will be the new acceleration? An object has an acceleration of 12.0 m/s^2. The net force acting on the object is halved (decreased to one half its original value) while the mass of the object is held constant.
Answer:
6.6 N
Explanation:
Let's take the direction of the force of 4.0 N as positive x-direction. This means that the force of 3.0 N is at 40 degrees above it. So the components of the two forces along the x- and y-directions are:


So the resultant has components

So the magnitude of the resultant is

And in order for the body to be balanced, the third force must be equal and opposite (in direction) to this force: so, the magnitude of the third force must be 6.6 N.
The internal energy of the gas is 49,200 J
Explanation:
The internal energy of a diatomic gas, such as
, is given by

where
n is the number of moles
R is the gas constant
T is the absolute temperature of the gas
For the gas in this problem, we have:
n = 4.50 (number of moles)
R = 8.31 J/(mol·K) (gas constant)
(absolute temperature)
Substituting, we find:

Learn more about ideal gases:
brainly.com/question/9321544
brainly.com/question/7316997
brainly.com/question/3658563
#LearnwithBrainly
Answer:
The Value is 
Explanation:
The explanation is shown on the first uploaded image