Answer:
Explanation:
The sandpaper block did not move because the forces of friction and gravity were balanced.
Answer:
12 (Magnesium- Mg)
Explanation:
Looking at the four numbers, we have:
Magnesium, Silicon, Sulfur, and Chlorine.
We can eliminate two of the answers immediately just by looking at the periodic table.
Sulfur and Chlorine are on the nonmetal side of the periodic table. So that's <em>definitely</em> not it. That leaves Magnesium and Silicon.
Silicon is a Metalloid. Magnesium is an Alkaline earth Metal.
Metaloids are elements that have a mix of both<em> metal</em> and<em> nonmetal </em>properties (luster, how it feels, etc.). Since it's a MIX and Magnesium is just straight METAL-
We can say Magnesium has the most metallic properties.
hope this helps!!
Answer:
44.64 seconds
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration due to gravity = 9.8 m/s²


<u>Time taken to reach 1180 m is 11.29 seconds</u>

<u>Time the rocket will keep going up after the engines shut off is 13.06 seconds.</u>

The distance the rocket will keep going up after the engines shut off is 836.05 m
Total distance traveled by the rocket in the upward direction is 1180+836.05 = 2016.05 m
The rocket will fall from this height

<u>Time taken by the rocket to fall from maximum height is 20.29 seconds</u>
Time the rocket will stay in the air is 11.29+13.06+20.29 = 44.64 seconds
A would be number 2. Newton's First Law states that an object at rest, will stay at rest and an object in motion, will stay in motion, unless acted upon by an unbalanced force. B would be number 3. His Second Law states that <span>the sum of the forces acting on a body is equal to the product of the mass of the body and the acceleration produced by the forces. And, C would be number 1. His Third Law states that for every action, there is an equal and opposite reaction. Hope this helps!</span>
Answer:
h = 2.64 meters
Explanation:
It is given that,
Mass of one ball, 
Speed of the first ball,
(upward)
Mass of the other ball, 
Speed of the other ball,
(downward)
We know that in an inelastic collision, after the collision, both objects move with one common speed. Let it is given by V. Using the conservation of momentum to find it as :


V = 7.2 m/s
Let h is the height reached by the combined balls of putty rise above the collision point. Using the conservation of energy as :



h = 2.64 meters
So, the height reached by the combined mass is 2.64 meters. Hence, this is the required solution.