Answer:
The correct answer is: d. The pKa of the chosen buffer should be close to the optimal pH for the biochemical reaction.
Explanation:
The buffer resist or maintain the change in pH in case of Acid or basic addition to the solution. The buffer capacity should be within one or two pH units when compared to the optimal pH.
Thus it is important to select a buffer with pKa close to the optimum pH of the reaction because the ability for the buffer to maintain the pH is is great at the pH close to pKa.
Answer:
a. 63.2%
b. 11.7%
c. 73.3%
d. 0.995%
e. 55.5%
Explanation:
An ionic compound is a compound that is formed by ions, so one of the elements must donate electrons (which is the cation, the positive ion), and the other will receive these electrons (which is the anion, the negative ion).
The power of an element has to attract the electrons is called electronegativity, and so, as higher is the difference of electronegative of the elements, it is more probable that one of them will "still" the electrons and will form an ionic compound. The percent of this ionic character can be found by the Pauling's equation:
*100%
Where
is the electronegativity difference of the elements. Thus, consulting an electronegativity table:
a.
= 1.5
= 3.5
*100%
%IC = 63.2%
b.
= 1.6
= 2.1
*100%
%IC = 11.7%
c.
= 0.7
= 3.0
*100%
%IC = 73.3%
d.
= 1.7
= 1.9
*100%
%IC = 0.995 %
e.
= 1.2
= 3.0
*100%
%IC = 55.5%
Answer:
130 Liters
Explanation:
if 1 mol is 22.4 L, then 5.8 mol is 130 L (129.92 but use sig figs)
Answer: 63.26%
Explanation:
If we let the abundance of the first isotope be x, then:

Which is equal to <u>63.26%</u>
Answer:
B
Explanation:
Homogeneous= all particles are dissolved thoroughly
Solute= 1 gram of salt
Solvent= 500 mL water