The molar mass of Fe would be 55.8450.
The temperatures of the gases will not be equal as oxygen gas will have a higher temperature than hydrogen gas because it has fewer moles overall.
<h3>Briefing :</h3>
The mechanical behavior of ideal gases is described by the ideal gas law. It has the ability to compute the volume of gases created or absorbed.
This equation is frequently used in chemical equations to convert between volumes and molar quantities.
According to the ideal gas law, there is a relationship between gas pressure, temperature, and volume.
PV = nRT
V is the same for both
So,
T is same for both.
When n increases, T decreases, so since n for hydrogen gas is 1 and n for oxygen gas is 0.5, it follows that oxygen gas will have a higher temperature than hydrogen gas because it has fewer moles overall.
To know more about ideal gases :
brainly.com/question/15962335
#SPJ9
Answer:
Pb(NO3)2(aq) + 2NaCl(aq) -> 2NaNO3(aq)+PbCl2(s)
Explanation:
Pb(NO3)2(aq)+NaCl(aq) -> NaNO3(aq)+PbCl2(s)
This is how it starts out.
Left:
Right
So the place to start with this equation is to bring the Cls up to 2
Pb(NO3)2(aq)+2NaCl(aq) -> NaNO3(aq)+PbCl2(s)
But the Nas are now out of kilter.
Pb(NO3)2(aq)+ 2NaCl(aq) -> NaNO3(aq)+PbCl2(s)
Now the right has a problem. There's only 1 Na
Pb(NO3)2(aq) + 2 NaCl(aq) -> 2NaNO3(aq)+PbCl2(s)
Check it out. It looks like we are done.