1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
valentinak56 [21]
3 years ago
10

2

Physics
1 answer:
Yuliya22 [10]3 years ago
8 0
As wavelength increase, frequency decrease
You might be interested in
A uniformly charged ring of radius 10.0 cm has a total charge of 75.0 mC. Find the electric field on the axis of the ring at (a)
wlad13 [49]

Answer:

(a) 6650246.305 N/C

(b) 24150268.34 N/C

(c) 6408227.848 N/C

(d) 665024.6305 N/C

Explanation:

Given:

Radius of the ring (r) = 10.0 cm = 0.10 m           [1 cm = 0.01 m]

Total charge of the ring (Q) = 75.0 μC = 75\times 10^{-6}\ \mu C    [1 μC = 10⁻⁶ C]

Electric field on the axis of the ring of radius 'r' at a distance of 'x' from the center of the ring is given as:

E_x=\dfrac{kQx}{(x^2+r^2)^\frac{3}{2}}

Plug in the given values for each point and solve.

(a)

Given:

Q=75\times 10^{-6}\ \mu C, r=0.01\ m, a=1.00\ cm=0.01\ m,k=9\times 10^{9}\ Nm^2/C^2

Electric field is given as:

E_x=\dfrac{(9\times 10^{9})(75\times 10^{-6})(0.01)}{((0.01)^2+(0.1)^2)^\frac{3}{2}}\\\\E_x=\dfrac{6750}{1.015\times 10^{-3}}\\\\E_x=6650246. 305\ N/C

(b)

Given:

Q=75\times 10^{-6}\ \mu C, r=0.01\ m, a=5.00\ cm=0.05\ m,k=9\times 10^{9}\ Nm^2/C^2

Electric field is given as:

E_x=\dfrac{(9\times 10^{9})(75\times 10^{-6})(0.05)}{((0.05)^2+(0.1)^2)^\frac{3}{2}}\\\\E_x=\dfrac{33750}{1.3975\times 10^{-3}}\\\\E_x=24150268.34\ N/C

(c)

Given:

Q=75\times 10^{-6}\ \mu C, r=0.01\ m, a=30.0\ cm=0.30\ m,k=9\times 10^{9}\ Nm^2/C^2

Electric field is given as:

E_x=\dfrac{(9\times 10^{9})(75\times 10^{-6})(0.30)}{((0.30)^2+(0.1)^2)^\frac{3}{2}}\\\\E_x=\dfrac{202500}{0.0316}\\\\E_x=6408227.848\ N/C

(d)

Given:

Q=75\times 10^{-6}\ \mu C, r=0.01\ m, a=100\ cm=1\ m,k=9\times 10^{9}\ Nm^2/C^2

Electric field is given as:

E_x=\dfrac{(9\times 10^{9})(75\times 10^{-6})(1)}{((1)^2+(0.1)^2)^\frac{3}{2}}\\\\E_x=\dfrac{675000}{1.015}\\\\E_x=665024.6305\ N/C

7 0
3 years ago
A particle is moving along the x-axis so that its position at any time t is greater than and equal to 0 is given by x(t)=2te^-t?
erastovalidia [21]
For speed you can differentiate the equation, for acceleration you can again differentiate the equation .
at t=0 the particle is slowing down , when you get equation for velocity put t=0 then only -1 is left
6 0
3 years ago
A) 1.2-kg ball is hanging from the end of a rope. The rope hangs at an angle 20° from the vertical when a 19 m/s horizontal wind
Marat540 [252]

Answer:

Part a)

F_v = 4.28 N

Part B)

L = 1.02 m

Part C)

v = 1.25 m/s

Explanation:

Part A)

As we know that ball is hanging from the top and its angle with the vertical is 20 degree

so we will have

Tcos\theta = mg

T sin\theta = F_v

\frac{F_v}{mg} = tan\theta

F_v = mg tan\theta

F_v = 1.2\times 9.81 (tan20)

F_v = 4.28 N

Part B)

Here we can use energy theorem to find the distance that it will move

-\mu mg cos\theta L + mg sin\theta L = -\frac{1}{2}mv^2

(-(0.37)m(9.81) cos15 + m(9.81) sin15)L = - \frac{1}{2}m(1.4)^2

(-3.5 + 2.54)L = - 0.98

L = 1.02 m

Part C)

At terminal speed condition we know that

F_v = mg

bv^2 = mg

2.5 v^2 = 3.9

v = 1.25 m/s

7 0
3 years ago
A ball is dropped from rest at point O. After falling for some time, it passes by a window of height 3.3 m and it does so in 0.2
stiv31 [10]

Answer:

Speed at which the ball passes the window’s top = 10.89 m/s

Explanation:

Height of window = 3.3 m

Time took to cover window = 0.27 s

Initial velocity, u = 0m/s

We have equation of motion s = ut + 0.5at²

For the top of window (position A)

                     s_A=0\times t_A+0.5\times 9.81t_A^2\\\\s_A=4.905t_A^2

For the bottom of window (position B)

                     s_B=0\times t_B+0.5\times 9.81t_B^2\\\\s_A=4.905t_B^2

\texttt{Height of window=}s_B-s_A=3.3\\\\4.905t_B^2-4.905t_A^2=3.3\\\\t_B^2-t_A^2=0.673

We also have

                 t_B-t_A=0.27

Solving

         t_B=0.27+t_A\\\\(0.27+t_A)^2-t_A^2=0.673\\\\t_A^2+0.54t_A+0.0729-t_A^2=0.673\\\\t_A=1.11s\\\\t_B=0.27+1.11=1.38s

So after 1.11 seconds ball reaches at top of window,

       We have equation of motion v = u + at

                                     v_A=0+9.81\times 1.11=10.89m/s

Speed at which the ball passes the window’s top = 10.89 m/s                

7 0
3 years ago
Consider a large truck carrying a heavy load, such as steel beams. A significant hazard for the driver is that the load may slid
nataly862011 [7]

Answer:

A)

the minimum stopping distance for which the load will not slide forward relative to the truck is 14 m

B)

data that were not necessary to the solution are;

a) mass of truck and b) mass of load

Explanation:

Given that;

mass of load m_{LS} = 10000 kg

mass of flat bed m_{FB} = 20000 kg

initial speed of truck v_{0} = 12 m/s

coefficient of friction between the load sits and flat bed μs = 0.5

A) the minimum stopping distance for which the load will not slide forward relative to the truck.

Now, using the expression

Fs,max = μs F_{N}     -------------let this be equation 1

where F_{N} = normal force = mg

so

Fs,max = μs mg

ma_{max} = μs mg

divide through by mass

a_{max} = μs g    ---------- let this be equation 2

in equation 2, we substitute in our values

a_{max} = 0.5 × 9.8 m/s²

a_{max} = 4.9 m/s²

now, from the third equation of motion

v² = u² + 2as

v_{f}² = v_{0}² + 2aΔx

where v_{f} is final velocity ( 0 m/s )

a is acceleration( - 4.9 m/s² )

so we substitute

(0)² = (12 m/s)² + 2(- 4.9 m/s² )Δx

0 = 144 m²/s² - 9.8 m/s²Δx

9.8 m/s²Δx = 144 m²/s²

Δx = 144 m²/s² /  9.8 m/s²

Δx = 14 m

Therefore, the minimum stopping distance for which the load will not slide forward relative to the truck is 14 m

B) data that were not necessary to the solution are;

a) mass of truck and b) mass of load

3 0
3 years ago
Other questions:
  • In a transverse wave that travels through a medium, the molecules of the medium vibrate
    12·1 answer
  • The efficiency of a Stirling cycle depends on the temperatures of the hot and cold isothermal parts of the cycle.If you increase
    11·1 answer
  • What is the speed of a proton whose kinetic energy is 3.4 kev ?
    7·1 answer
  • What is another principle an artist can follow to create the illusion of depth on a flat surface?
    10·1 answer
  • A 5.0-kg crate is on an incline that makes an angle 30° with the horizontal. If the coefficient of static friction is 0.5, what
    11·1 answer
  • The main difference between speed and velocity involves
    9·2 answers
  • physics major is cooking breakfast when he notices that the frictional force between the steel spatula and the Dry Steel frying
    15·1 answer
  • a 55 kg baseball player slides into third base with an initial speed of 4.6 m/s If the coefficient of kinetic friction between t
    14·1 answer
  • How many neutrons are there in the neutral
    8·1 answer
  • A scientist stated that rock layer C is the
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!