Answer:
Options d and e
Explanation:
The pendulum which will be set in motion are those which their natural frequency is equal to the frequency of oscillation of the beam.
We can get the length of the pendulums likely to oscillate with the formula;
![L =\frac{g}{w^{2} }](https://tex.z-dn.net/?f=L%20%3D%5Cfrac%7Bg%7D%7Bw%5E%7B2%7D%20%7D)
where g=9.8m/s
ω= 2rad/s to 4rad/sec
when ω= 2rad/sec
![L= \frac{9.8}{2^{2} }](https://tex.z-dn.net/?f=L%3D%20%5Cfrac%7B9.8%7D%7B2%5E%7B2%7D%20%7D)
L = 2.45m
when ω= 4rad/sec
![L=\frac{9.8}{4^{2} }](https://tex.z-dn.net/?f=L%3D%5Cfrac%7B9.8%7D%7B4%5E%7B2%7D%20%7D)
L = 9.8/16
L=0.6125m
L is between 0.6125m and 2.45m.
This means only pendulum lengths in this range will oscillate.Therefore pendulums with length 0.8m and 1.2m will be strongly set in motion.
Have a great day ahead
Answer:
![F_{net} = 1.875\,N](https://tex.z-dn.net/?f=F_%7Bnet%7D%20%3D%201.875%5C%2CN)
Explanation:
Asúmase que la patinadora experimenta una aceleración constante. La fuerza neta experimentada por la patinadora:
![F_{net} = (50\,kg)\cdot \left[\frac{\left(15\,\frac{m}{s}\right)^{2}-\left(0\,\frac{m}{s}\right)^{2} }{2\cdot (3000\,m)} \right]](https://tex.z-dn.net/?f=F_%7Bnet%7D%20%3D%20%2850%5C%2Ckg%29%5Ccdot%20%5Cleft%5B%5Cfrac%7B%5Cleft%2815%5C%2C%5Cfrac%7Bm%7D%7Bs%7D%5Cright%29%5E%7B2%7D-%5Cleft%280%5C%2C%5Cfrac%7Bm%7D%7Bs%7D%5Cright%29%5E%7B2%7D%20%7D%7B2%5Ccdot%20%283000%5C%2Cm%29%7D%20%5Cright%5D)
![F_{net} = 1.875\,N](https://tex.z-dn.net/?f=F_%7Bnet%7D%20%3D%201.875%5C%2CN)
25 x 10^-5
= 0.00025
25 cm
= 0.00025 km
Answer:
x=0.154kg
Explanation:
(x*L)+(0.5kg*4200*50)+(x*4200*(-50)=0
(x*333 000J/kg*c)+(0.5kg*4200J/kg*C*(-40C))+(x*4200J/kg*C*50C)=0