The magnitude of the electric field for 60 cm is 6.49 × 10^5 N/C
R(radius of the solid sphere)=(60cm)( 1m /100cm)=0.6m

Since the Gaussian sphere of radius r>R encloses all the charge of the sphere similar to the situation in part (c), we can use Equation (6) to find the magnitude of the electric field:

Substitute numerical values:

The spherical Gaussian surface is chosen so that it is concentric with the charge distribution.
As an example, consider a charged spherical shell S of negligible thickness, with a uniformly distributed charge Q and radius R. We can use Gauss's law to find the magnitude of the resultant electric field E at a distance r from the center of the charged shell. It is immediately apparent that for a spherical Gaussian surface of radius r < R the enclosed charge is zero: hence the net flux is zero and the magnitude of the electric field on the Gaussian surface is also 0 (by letting QA = 0 in Gauss's law, where QA is the charge enclosed by the Gaussian surface).
Learn more about Gaussian sphere here:
brainly.com/question/2004529
#SPJ4
Answer:
The sun looks bigger than other stars because it is closer to the Earth, distance makes it look larger
Reading a digital thermometer is more preferable because you can just easily read the measurement from a screen, a number will just show in a screen as compared to a liquid-based thermometer where you still have to read the measurement by counting the markers in the thermometer. Hope this helps! Mark brainly please!
the earth moves throughout the year such as rotate around the sun, so yes the it does move and it sits roughly at 93.048 million miles away from the sun. I hope this helps you out! :)