The expression can be solved by expanding the bracket and multiplying out the terms


Therefore, the expression can be simplified as;

Alternatively, using the theorem of difference of two squares, which is

Hence,

Answer:
Ezra can water at most approximately 8 sunflower plants with the remaining amount of water.
Step-by-step explanation:
Given the inequality function
0.7S+0.5L≤11 where S represent the number of sunflower plants and L represent the number of lily plants Ezra's water supply can water, if Ezra waters 10 lily plants, then we can calculate the maximum amount of sunflower plant that he can water with the remaining amount of water by simply substituting L = 10 into the inequality function as shown;
0.7S+0.5L≤11
0.7S+0.5(10)≤11
0.7S+5≤11
Taking 5 to the other side:
0.7S≤11-5
0.7S≤6
S≤6/0.7
S≤8.57
This shows that Ezra can water at most approximately 8 sunflower plants with the remaining amount of water.
Answer:
Step-by-step explanation:
4) x² - 14x + 48
We would find two numbers such that their sum or difference is -14x and their product is 48x².
The two numbers are - 6x and - 8x. Therefore,
x² - 6x - 8x + 48
x(x - 6) - 8(x - 6)
(x - 8)(x - 6)
5) 2x² + 21x - 11
We would find two numbers such that their sum or difference is 21x and their product is - 22x².
The two numbers are 22x and - x. Therefore,
2x² + 22x - x - 11
2x(x + 11) - 1(x + 11)
(2x - 1)(x + 11)
6) 5a² - 125
5 is a common factor. So we would factorize 5. It becomes
5(a² - 25)
Simplifying further, it becomes
5(a + 5)(a - 5)
2√72 / √8 ± √2
If the denominator is √8 + √2,
2√72 / √8 + √2
= 2√(2*2*2*3*3) / √(2*2*2) + √2
= 2*2*3√2 / 2√2 + √2
= 12√2 / 3√2
= 4
Answer:
Inequality Form: m > 7/12
Interval Notation: (7/12, ∞)