First we will calculate free energy change:
ΔG₀ = ΔH₀ - (T * ΔS₀)
= - 793 kJ - (298 * - 0.319 kJ/K) = - 698 kJ
We know the relation between free energy change and cell potential is:
ΔG₀ = - n F E⁰ where
F = Faraday's constant = 96485 C/mol
n = 2 (given by equation that the electrons involved is 2)
ΔG₀ = - 2 x 96485 x E⁰
- 698 kJ = - 2 x 96485 x E⁰
E⁰ = (698 x 1000) / (2 x 96485) = 3.62 volts
Answer:
The amount of Chlorodecane in the unknown is 0.105nmols
Explanation:
a) Since the GC is in an isothermal state, Chlorohexane C6H13Cl (1.69 nmols) because of its lower boiling point will elute first and Chlorodecane C12H21Cl will elute second.
The area of the first peak corresponding to Chlorohexane is 32434 units.
The area of the second peak corresponding to chlorodecane is 2022 units.
Since the response factor of the compound is not given in question and considering the response factor is same for both the compounds, the answer will be as follow:
1.69 nmols of Chlorohexane gives 32434 units
How much of chlorodecane gives 2022 units
By cross multiplication;
Moles of Chlorodecane = 2022*1.69/32434
=0.105nmols
Answer:yes
Explanation:
this is because the distance doesnt matter
Answer:The product formed on reaction with hydroxide ion as nucleophile is 2R-hexane-2-ol.
The product formed on reaction with water would be a 50:50 mixture of
2S-hexane-2-ol. and 2R-hexane-2-ol.
Explanation:
2S-iodohexane on reactiong with hydroxide ion would undergo SN² substitution reaction that is substitution bimolecular. Hydroxide ion has a negative charge and hence it is a quite good nucleophile .
The rate of a SN² reaction depends on both the substrate and nucleophile . Here the substrate is a secondary carbon center having Iodine as a leaving group.SN² reaction takes place here as hydroxide ion is a good nucleophile and it can attack the secondary carbon center from the back side leading to the formation of 2R-hexane-2-ol.
In a SN² reaction since the the nucleophile attacks from the back-side so the product formation takes place with the inversion of configuration.
When the same substrate S-2-iodohexane undergoes a substitution reaction with water as a nucleophile then the reaction occurs through (SN¹) substitution nucleophilic unimolecular mechanism .
The rate of a SN¹ reaction depends only on the nature of substrate and is independent of the nature of nucleophile.
The SN¹ reaction is a 2 step reaction , in the first step leaving group leaves leading to the formation of a carbocation and once the carbocation is formed then any weaker nucleophile or even solvent molecules can attack leading the formation of products.
In this case a secondary carbocation would be generated in the first step and then water will attack this carbocation to form the product in the second step.
The product formed on using water as a nucleophile would be a racemic mixture of R and S isomers of hexane -2-ol in 50:50 ratio. The two products formed would be 2R-hexane-2-ol and 2S-hexane-2-ol.
Kindly refer the attachment for reaction mechanism and structure of products.