We will use boiling point formula:
ΔT = i Kb m
when ΔT is the temperature change from the pure solvent's boiling point to the boiling point of the solution = 77.85 °C - 76.5 °C = 1.35
and Kb is the boiling point constant =5.03
and m = molality
i = vant's Hoff factor
so by substitution, we can get the molality:
1.35 = 1 * 5.03 * m
∴ m = 0.27
when molality = moles / mass Kg
0.27 = moles / 0.015Kg
∴ moles = 0.00405 moles
∴ The molar mass = mass / moles
= 2 g / 0.00405 moles
= 493.8 g /mol
Answer: the molecular formula is C10H20O
Explanation:Please see attachment for explanation
Since I don't have the diagram I'm going off my best estimate and the flow of the positive and negative charged protons and neutrons create a flow of energy when collided through a circuit or in this case the wire
According to avogadro constant, the number of units in one mole of any substance contain 6.022 x10 ^23 atoms
therefore the number of o atoms in one mole of CuSO4 = 6.022 x 10 ^ 23
From the periodic table:
mass of carbon = 12 grams
mass of hydrogen = 1 gram
mass of chlorine = 35.5 grams
Therefore,
molar mass of CH2Cl2 = 12 + 2(1) + 2(35.5) = 85 grams
number of moles = mass / molar mass
number of moles of CH2Cl2 = 66.05 / 85 = 0.777 moles
One mole of CH2Cl2 contains two moles of Cl and each chlorine mole has Avogadro's number of atoms in it.
Therefore,
number of chlorine atoms in 0.777 moles of CH2Cl2 can be calculated as follows:
number of atoms = 0.777 * 2 * 6.022 * 10^23 = 9.358 * 10^23 atoms
Now, we will take log base 10 for this number:
log (9.358 * 10^23) = 23.97119