Answer:
D. C > B >A
Hope it helps!
Explanation:
From strongest to weakest, the intermolecular forces rank in the following way:
Strongest: Hydrogen bonding. This occurs when compounds contain #"O"-"H"# , #"N"-"H"# , or #"F"-"H"# bonds. ...
Less strong: Dipole-dipole forces. ...
Weakest: London Dispersion Forces.
Answer:
=C₄H₄O₂
Explanation:
Given the empirical formula of a molecule, the he the quotient of the molecular mas and and the empirical mass=constant.
84.0 g/mol/mass of(C₂H₂O)=constant
=84/(12×2+1×2×16)
=84/42
=2
Therefore, the molecular formula is (C₂H₂O)₂=C₄H₄O₂
B) a molecule
A molecule is formed when two atoms join together with a covalent bond.
Answer:
Following are the responses to the given points:
Explanation:
For question 1:
Butanoic acid, butane, and butanone are also the three chemicals most dissolve in water. Its intermolecular force forces are produced by carboxylic acid functional groups with water.
For question 2:
Butanoic acid is a rancid buffer.
Methanoic acid is responsible for the stinging red ants
For question 3:
Methyl butanoate's chemical structure.
<span>E=hν</span> where E is the energy of a single photon, and ν is the frequency of a single photon. We recall that a photon traveling at the speed of light c and a frequency ν will have a wavelength λ given by <span>λ=<span>cν</span></span>λ will have an energy given by <span>E=<span><span>hc</span>λ</span></span><span>λ=657</span> nm. This will be <span>E=<span><span>(6.626×<span>10<span>−34</span></span>)(2.998×<span>108</span>)</span><span>(657×<span>10<span>−9</span></span>)</span></span>=3.0235×<span>10<span>−19</span></span>J</span>
So we now know the energy of one photon of wavelength 657 nm. To find out how many photons are in a laser pulse of 0.363 Joules, we simply divide the pulse energy by the photon energy or <span>N=<span><span>E<span>pulse </span></span><span>E<span>photon</span></span></span>=<span>0.363<span>3.0235×<span>10<span>−19</span></span></span></span>=1.2×<span>1018</span></span>So there would be <span>1.2×<span>1018</span></span><span> photons of wavelength 657 nm in a pulse of laser light of energy 0.363 Joules.</span>