To determine the number of formula units in a sample of a compound you need to divide the number of grams by the formula mass. The formula mass of NaCl is 23 g/mol + 35.5 g/mol = 58.5 g/mol, and the number of grams of the sample is 0.14 mg * 1 g/ 1000 mg = 0.00014 g. Then the answer is 0.00014 g / 58.5 g = 2.30 * 10^ -6, which rounded to two significant figures is 2.4 * 10^ -6. So<span> the answer is 2.4 * 10^-6 or 0.0000024</span>
The answer is A track star speeding up as he sprints to the finish line.
CO2 and H2O react to form H2CO3 and two bonds are broken each in CO and H2O to form H2CO3.
<h3>What is chemical bonding?</h3>
Chemical bonding refers to the forces of attraction which hold atoms of the same or different elements together in order to form stable compounds or molecules .
Chemical bonding may be either ionic or covalent.
The greater the number of bonds in a compound, the more stable the compound.
During chemical reactions, bonds are broken and new binds are formed.
There are two bonds each in CO2 and H2O.
This, in the reaction between CO2 and H2O react to form H2CO3, , the number of bonds broken in H2O is two and in CO2 is two.
Learn more about chemical bonding at: brainly.com/question/819068
30% should be the percentage of oxygen if the total mass of fe2o3 is 160.
Answer:
The concentration of the copper sulfate solution is 83 mM.
Explanation:
The absorbance of a copper sulfate solution can be calculated using Beer-Lambert Law:
A = ε . c . <em>l</em>
where
ε is the extinction coefficient of copper sulfate (ε = 12 M⁻¹.cm⁻¹)
c is its molar concentration (what we are looking for)
l is the pathlength (0.50 cm)
We can use this expression to find the molarity of this solution:
