Answer:
2-methoxybutane
Explanation:
This reaction is an example of Nucleophilic substitution reaction. Also, the reaction of (S)-2-bromobutane with sodium methoxide in acetone, is bimolecular nucleophilic substitution (SN2). The reaction equation is given below.
(S)-2-bromobutane + sodium methoxide (in acetone) → 2-methoxybutane
<h3>Solution-:</h3>
- option D
- maintains a constant volume.
#<em>o</em><em>f</em><em>f</em><em>i</em><em>c</em><em>a</em><em>i</em><em>l</em><em> </em><em>Nazo</em>
<em>ll </em><em>Radhe</em><em> Radhe</em><em> ll</em>
20 mol of NH, can be produce from 30 mol o H2
Answer:
Faraday's constant will be smaller than it is supposed to be.
Explanation:
If the copper anode was not completely dry when its mass was measured, mass of the copper must be heavier than it should have been. Hence, the calculated Faraday’s constant would be smaller than it is supposed to be since when calculating Faraday’s Constant, the charge transferred is divided by the moles of electrons.
Answer:
A reaction is non-spontaneous at any temperature when the Gibbs free energy > 0.
Explanation:
There is a state function, that determines if a reaction is sponaneous or non spontaneous:
ΔG = Gibbs free energy
A reaction is non spontaneous when it does require energy to produce that reaction. It will be spontaneous, when the reaction does not require energy to be occured.
The formula is: ΔG = ΔH - T.ΔS
ΔH → Enthalpy → Energy gained or realeased as heat.
ΔH < 0 → <em>Exothermic reaction. Spontaneity is favored
</em>
T → Temperature
ΔS → Entropy → Degree of disorder of a system.
When the system has a considered disorder ΔS > 0, disorder increases.
When the system is more ordered, ΔS < 0, disorder decreases.
The reaction will be non spontaneous if, the enthalpy is positive (endothermic reaction) and the ΔS < 0 (disorder decreases). It will not occur if we do not give energy.
ΔG < 0 → Spontaneous reaction
ΔG > 0 → Non spontaneous reaction
ΔG = 0 → System in equilibrium