Here you are looking on the Free Body diagram of a net force of 0N in both the x and y-directions. the only ones that has that condition met is A and C.
Answer: 2 SO2 (g) + O2 (g) Kp = 7.69 If a vessel at this temperature initially ... and if the partial pressure of sulfur trioxide at equilibrium is 0.100 atm,
Explanation:
Answer:
0.479 M or mol/L
Explanation:
So Molarity is moles/litres of solution...often written as M=mol/L
So here we are given grams of BaCl2 which we have to convert to moles. To convert to moles of BaCl2 we have to divide 63.2 g BaCl2 by molar mass of BaCl2 which is 208.23 g/mol so you get 63.2/208.23 = 0.3035 moles of BaCl2
Second step is converting the 634mL to litres by simply dividing by 1000 because we know 1 litre has 1000ml so 634/1000 = 0.634L
Now we just plug these guys in our molarity formula M=mol/L
M= 0.3035/0.634 = 0.479 M or mol/L
<span>rutherfordium element # 104</span>
When a solvent has as much of the dilute dissolved in it as possible, then it is saturated.
If you were to heat the water, its capacity would increase and would then be super-saturated because it has more dissolved in it than possible as room temp.
Since there is no heating being done, the water is just saturated.
Hope that helps!