Answer:
The answer to your question is MgSO₄ 5H₂O
Explanation:
Data
mass of MgSO₄ = 2.86 g
mass of H₂O = 2.14 g (5 - 2.86)
Process
1.- Calculate the molecular mass of the compounds
MgSO₄ = 24 + 32 + (16 x 4) = 120
H₂O = 16 + 2 = 18
2.- Convert the grams obtain to moles
120 g of MgSO₄ --------------- 1 mol
2.8 g ---------------- x
x = (2.8 x 1)/120
x = 0.024 moles
18 g of H₂O --------------------- 1 mol
2.14 g -------------------- x
x = (2.14 x 1)/18
x = 0.119
3.- Divide by the lowest number of moles
MgSO₄ = 0.024/0.024 = 1
H₂O = 0.119/ 0.024 = 5
4.- Write the molecular formula
MgSO₄5H₂O
The main functions of the cell wall are to provide structure, support, and protection for the cell.
I think D?? I apologize if not-check in other answers to be sure ^^
Answer:
8.08 × 10⁻⁴
Explanation:
Let's consider the following reaction.
COCl₂(g) ⇄ CO (g) + Cl₂(g)
The initial concentration of phosgene is:
M = 2.00 mol / 1.00 L = 2.00 M
We can find the final concentrations using an ICE chart.
COCl₂(g) ⇄ CO (g) + Cl₂(g)
I 2.00 0 0
C -x +x +x
E 2.00 -x x x
The equilibrium concentration of Cl₂, x, is 0.0398 mol / 1.00 L = 0.0398 M.
The concentrations at equilibrium are:
[COCl₂] = 2.00 -x = 1.96 M
[CO] = [Cl₂] = 0.0398 M
The equilibrium constant (Keq) is:
Keq = [CO].[Cl₂]/[COCl₂]
Keq = (0.0398)²/1.96
Keq = 8.08 × 10⁻⁴
The absolute value of the difference in electronegativity (ΔEN) of two bonded atoms provides a rough measure of the polarity to be expected in the bond and, thus, the bond type. When the difference is very small or zero, the bond is covalent and nonpolar. When it is large, the bond is polar covalent or ionic.