Answer:
Scientists seek to eliminate all forms of bias from their research. However, all scientists also make assumptions of a non-empirical nature about topics such as causality, determinism and reductionism when conducting research. Here, we argue that since these 'philosophical biases' cannot be avoided, they need to be debated critically by scientists and philosophers of science.
Explanation:
Scientists are keen to avoid bias of any kind because they threaten scientific ideals such as objectivity, transparency and rationality. The scientific community has made substantial efforts to detect, explicate and critically examine different types of biases (Sackett, 1979; Ioannidis, 2005; Ioannidis, 2018; Macleod et al., 2015). One example of this is the catalogue of all the biases that affect medical evidence compiled by the Centre for Evidence Based Medicine at Oxford University (catalogueofbias.org). Such awareness is commonly seen as a crucial step towards making science objective, transparent and free from bias.
Explanation:
the physical and chemical properties of an element are periodic functions of their atomic number.
In an experiement things that are changing are called variables.
Answer:
Limiting reactant: O2
grams NO2 produced = 230.276 g NO2
grams of NO unused = 26.67 gNO
Explanation:
2NO + O2 --> 2NO2
Step 1: Determine the molar ratio NO:O2
molar ratio NO:O2 = 5.895: 2.503 = 2.35
stoichiometric molar ratio NO:O2 = 2:1
So, O2 is the limiting reactant.
Step2: Determine the grams of NO2:
?g NO2 = moles O2 x (2moles NO2/1 mol O2) x (MM NO2/ 1 mol NO2) = 2.503 x 2 x 46 = 230.276 g NO2
Step 3: Determine the amount of excess reagent unreacted
moles excess NO reacted = moles O2 x (2 moles NO/1 mol O2) = 2.503 x 2 = 5.006 moles NO reacted
moles NO unreacted = total moles NO - moles NO reacted = 5.895-5.006 =0.889 moles NO unreacted
mass NO unreacted = moles NO unreacted x MM NO = 0.889 x 30 =26.67 g NO unreacted