1. Domain.
We have

in the denominator, so:
![x^2-2x-3\neq0\\\\(x^2-2x+1)-4\neq0\\\\(x-1)^2-4\neq0\\\\(x-1)^2-2^2\neq0\qquad\qquad[\text{use }a^2-b^2=(a-b)(a+b)]\\\\(x-1-2)(x-1+2)\neq0\\\\ (x-3)(x+1)\neq0\\\\\boxed{x\neq3\qquad\wedge\qquad x\neq-1}](https://tex.z-dn.net/?f=x%5E2-2x-3%5Cneq0%5C%5C%5C%5C%28x%5E2-2x%2B1%29-4%5Cneq0%5C%5C%5C%5C%28x-1%29%5E2-4%5Cneq0%5C%5C%5C%5C%28x-1%29%5E2-2%5E2%5Cneq0%5Cqquad%5Cqquad%5B%5Ctext%7Buse%20%7Da%5E2-b%5E2%3D%28a-b%29%28a%2Bb%29%5D%5C%5C%5C%5C%28x-1-2%29%28x-1%2B2%29%5Cneq0%5C%5C%5C%5C%0A%28x-3%29%28x%2B1%29%5Cneq0%5C%5C%5C%5C%5Cboxed%7Bx%5Cneq3%5Cqquad%5Cwedge%5Cqquad%20x%5Cneq-1%7D)
So there is a hole or an asymptote at x = 3 and x = -1 and we know, that answer B) is wrong.
2. Asymptotes:

We have only one asymptote at x = -1 (and hole at x = 3), thus the correct answer is A)
Answer:
i would say C
Step-by-step explanation:
The man travelled in different ways: by rail, by taxi, by ___ and by foot. I placed a blank there because there seems to be a missing word in the given problem above. For sample purposes, let's just assume that is travel by bus.
Since all of these travels are equal to 1 whole journey, you can express each travel as a fraction. When you add them up, the answer would be 1. So,
3/8 + 1/4 + 1/8 + x = 1
The variable x here denotes the fraction of his travel by foot. We are only given the exact distance travelled on foot which is 2 km. We have to find the fraction of the travel by foot to determine the length of the total distance travelled. Solving for x,
x = 1 - 3/8 - 1/4 - 1/8
x = 1/4
That means that the travel by foot comprises 1/4 of the whole journey. Thus,
Let total distance be D.
1.4*D = 2 km
D = 8 km
Therefore, the man travelled a total of 8 kilometers.
In order to solve this problem, you need to use a geometric series:

where:
a₁ = first term of the series = 36000
r = common rate = 10% raise, therefore 1.10
n = number of terms = 5
Therefore,
<span>

= 219783.60 $
Luke's total earnings in five years are
<span>
219783.60 $.</span>
</span>