Step-by-step explanation:
A Maclaurin series is a Taylor series that's centered at 0.
f(x) = ∑ₙ₌₀°° f⁽ⁿ⁾(0) / n! xⁿ
If we substitute f⁽ⁿ⁾(0) = (n + 1)!:
f(x) = ∑ₙ₌₀°° (n + 1)! / n! xⁿ
f(x) = ∑ₙ₌₀°° (n + 1) xⁿ
Use ratio test to find the radius of convergence.
lim(n→∞)│aₙ₊₁ / aₙ│< 1
lim(n→∞)│[(n + 2) xⁿ⁺¹] / [(n + 1) xⁿ]│< 1
lim(n→∞)│(n + 2) x / (n + 1)│< 1
│x│< 1
R = 1