1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Troyanec [42]
3 years ago
14

Explica de que tipo es cada oración según la actitud del hablante

Physics
1 answer:
Volgvan3 years ago
7 0

Answer:

Según la actitud del hablante las oraciones se clasifican en enunciativas, interrogativas, etc. ... adverbios o expresiones que complementan a toda la oración (COr): ojalá, quizá.

Explanation:

You might be interested in
Hi!! Does anyone know this answer? :D
Agata [3.3K]

Answer:

c seems to be the only reasonable answer

8 0
3 years ago
Read 2 more answers
PLEASE HELP!!!!
weqwewe [10]
The answer is A. <span>Some work input is used to overcome friction. </span>
6 0
3 years ago
Calculate the net force on the right charge due to the other two. Enter a positive value if the force is directed to the right a
lbvjy [14]

Answer:

Answer:

A. - 0.017N. It acts to the left.

B. - 0.043N. It acts to the left.

C. 0.060N. It acts to the right.

Explanation:

A. For the +65μC charge, we consider it to be the origin. Hence, the two other charges are on the +x axis.

The net coulombs force on the charge is

F = [KQ(1)Q(2)]/(r^2) + [KQ(1)Q(3)]/(r^2)

Where K = Coloumbs constant =

Q(1) = charge on the leftmost side.

Q(2) = charge in the middle.

Q(3) = charge on the rightmost side.

F = [(8.988 × 10^9)×(65×10^-6)×(48×10^-6)]/(40^2) + [(8.988 × 10^9)×(-95×10^-6)×(65×10^-6)]/(40^2)

F = 0.01753 - 0.03469

F = -0.017N

It has a negative sign, hence, it acts to the left.

B. For the +48μC charge, we consider it to be the origin. Hence, the leftmost charge is on the - x axis and the rightmost charge is on the +x axis.

The net coulombs force on the charge is

F = [-KQ(1)Q(3)]/(r^2) + [KQ(2)Q(3)]/(r^2)

F = [-(8.988×10^9)×(65×10^-6)×(48×10^-6)]/(40^2) + [(8.988 × 10^9)×(48×10^-6)×(-95×10^-6)]/(40^2)

F = -0.017 - 0.02562

F = - 0.043N

It has a negative sign, hence, it acts to the left.

C. For the -95μC charge, we consider it to be the origin. Hence, the two other charges are on the - x axis.

The net coulombs force on the charge is

F = [-KQ(1)Q(3)]/(r^2) - [KQ(2)Q(3)]/(r^2)

F = [-(8.988×10^9)×(65×10^-6)×(-95×10^-6)]/(40^2) - [(8.988 × 10^9)×(48×10^-6)×(-95×10^-6)]/(40^2)

F = +0.03469 + 0.02562

F = +0.060N

It has a positive sign, hence, it acts to the right.

Read more on Brainly.com - brainly.com/question/14592748#readmore

Explanation:

5 0
4 years ago
A transfer of charge is actually a gross movement of
son4ous [18]
A transfer of charge is actually a gross movement of electrons. Charged objects have a normal or "balanced" state. This state is balanced in a sense of positive charges (protons) and negative charges (electrons). When an object has an excess of deficiency of electrons, it will try to regain its balance by releasing or accepting electrons. 
5 0
3 years ago
Read 2 more answers
Potassium is a crucial element for the healthy operation of the human
Degger [83]

Answer:

1

  The mass of the Potassium-40 is  m_{40}} = 2.88*10^{-6} kg

2

  The Dose per year in Sieverts is   Dose_s = 26.4 *10^{-10}

Explanation:

From the question we are told that

   The isotopes of potassium in the body are Potassium-39, Potassium-40, and Potassium- 41

    Their abundance is 93.26%, 0.012% and 6.728%

   The mass of potassium contained in human body is  m = 3.0 g = \frac{3}{1000} = 0.0003 \ kg per kg of the body

    The mass of the first body is  m_1 = 80 \ kg

Now the mass of  potassium  in this body is mathematically evaluated as

       m_p =  m * m_1

substituting value

       m_p =  80  * 0.0003

      m_p  =0.024 kg

The amount of Potassium-40 present  is mathematically evaluated as

      m_{40}} =0.012% * 0.024

      m_{40}} = \frac{0.012}{100}  * 0.024

      m_{40}} = 2.88*10^{-6} kg

The dose of energy absorbed per year is mathematically represented as

          Dose  = \frac{E}{m_1}

Where E is the energy absorbed which is given as E = 1.10 MeV = 1.10 * 10^6 * 1.602*10^{-19}

    Substituting value

            Dose  = \frac{ 1.10 * 10^6 * 1.602*10^{-19}}{80}

            Dose  = 22*10^{-10} J/kg

The Dose in Sieverts is evaluated as

       Dose_s = REB * Dose

       Dose_s = 1.2 * 22*10^{-10}

       Dose_s = 26.4 *10^{-10}

             

3 0
3 years ago
Other questions:
  • When you see your image on the surface of the water in a pond, which phenomenon is at work?
    8·2 answers
  • Can fatigue seriously impair driving ability
    10·2 answers
  • A 2.0 kg block, initially moving at 10.0 m/s, slides 50.0 m across a sheet of ice beforecoming to rest. What is the magnitude of
    9·1 answer
  • Gordon throws a baseball into the air. It rises, stops when it reaches its greatest height, and then falls back down to the grou
    5·1 answer
  • What are the standard units of measurement for scientific experiments
    5·2 answers
  • What kind of destructive force or forces will most likely change the way Stone Mountain looks over the next million years? A) vo
    7·2 answers
  • In most electric generators, either the armature (the coil of wire) or the magnetic
    9·1 answer
  • Un bloque de 20kg de masa se desplaza horizontalmente en la dirección de eje X por acción de una fuerza horizontal variable F =
    15·1 answer
  • 100 degrees C equals how many degrees F?​
    5·1 answer
  • What kind of exercise should you do when you're cooling down after an<br> intense workout?
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!