The answer is C , you’re welcome
Answer:
State A = piece of metal; State B = air
Explanation:
For the three main states of matter here's how it breaks down.
Solid - Cannot be compressed and retains its shape
Liquid - Cannot be compressed and does not retain its shape
Gas - Compressible and does not retain its shape.
Knowing this State A has to be solid. Only one of the options has A as a solid, so that's the answer. Worth knowing state B is a gas though, only one compressible, just like solid is the only one that retains its shape.
Answer:
The Sun and planets are shown to the same scale. The small terrestrial planets and tiny Pluto are in the box---the Earth is the blue dot near the center of the box (montage created by Nick Strobel using NASA images).
Size
The Sun is by far the biggest thing in the solar system. From its angular size of about 0.5° and its distance of almost 150 million kilometers, its diameter is determined to be 1,392,000 kilometers. This is equal to 109 Earth diameters and almost 10 times the size of the largest planet, Jupiter. All of the planets orbit the Sun because of its enormous gravity. It has about 333,000 times the Earth's mass and is over 1,000 times as massive as Jupiter. It has so much mass that it is able to produce its own light. This feature is what distinguishes stars from planets.
Composition
What is the Sun made of? Spectroscopy shows that hydrogen makes up about 94% of the solar material, helium makes up about 6% of the Sun, and all the other elements make up just 0.13% (with oxygen, carbon, and nitrogen the three most abundant ``metals''---they make up 0.11%). In astronomy, any atom heavier than helium is called a ``metal'' atom. The Sun also has traces of neon, sodium, magnesium, aluminum, silicon, phosphorus, sulfur, potassium, and iron. The percentages quoted here are by the relative number of atoms. If you use the percentage by mass, you find that hydrogen makes up 78.5% of the Sun's mass, helium 19.7%, oxygen 0.86%, carbon 0.4%, iron 0.14%, and the other elements are 0.54%.
Explanation:
Answer:
Tectonic plate interactions are of three different basic types: Divergent boundaries are areas where plates move away from each other, forming either mid-oceanic ridges or rift valleys. These are also known as constructive boundaries. Convergent boundaries are areas where plates move toward each other and collide.
Explanation:
Meaning the answer to your question is depending on what type of tectonic plate interaction is occurring will depend on how the plates interact.
Answer:
a) k = 2231.40 N/m
b) v = 0.491 m/s
Explanation:
Let k be the spring force constant , x be the compression displacement of the spring and v be the speed of the box.
when the box encounters the spring, all the energy of the box is kinetic energy:
the energy relationship between the box and the spring is given by:
1/2(m)×(v^2) = 1/2(k)×(x^2)
(m)×(v^2) = (k)×(x^2)
a) (m)×(v^2) = (k)×(x^2)
k = [(m)×(v^2)]/(x^2)
k = [(3)×((1.8)^2)]/((6.6×10^-2)^2)
k = 2231.40 N/m
Therefore, the force spring constant is 2231.40 N/m
b) (m)×(v^2) = (k)×(x^2)
v^2 = [(k)(x^2)]/m
v = \sqrt{ [(k)(x^2)]/m}
v = \sqrt{ [(2231.40)((1.8×10^-2)^2)]/(3)}
= 0.491 m/s